ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssexmid Unicode version

Theorem ctssexmid 7024
Description: The decidability condition in ctssdc 6998 is needed. More specifically, ctssdc 6998 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
Hypotheses
Ref Expression
ctssexmid.1  |-  ( ( y  C_  om  /\  E. f  f : y
-onto-> x )  ->  E. f 
f : om -onto-> (
x 1o ) )
ctssexmid.lpo  |-  om  e. Omni
Assertion
Ref Expression
ctssexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, f, x, y

Proof of Theorem ctssexmid
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3182 . . 3  |-  { z  e.  om  |  ph }  C_  om
2 f1oi 5405 . . . 4  |-  (  _I  |`  { z  e.  om  |  ph } ) : { z  e.  om  |  ph } -1-1-onto-> { z  e.  om  |  ph }
3 f1ofo 5374 . . . 4  |-  ( (  _I  |`  { z  e.  om  |  ph }
) : { z  e.  om  |  ph }
-1-1-onto-> { z  e.  om  |  ph }  ->  (  _I  |`  { z  e. 
om  |  ph }
) : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )
4 ctssexmid.lpo . . . . . . . 8  |-  om  e. Omni
54elexi 2698 . . . . . . 7  |-  om  e.  _V
65rabex 4072 . . . . . 6  |-  { z  e.  om  |  ph }  e.  _V
7 resiexg 4864 . . . . . 6  |-  ( { z  e.  om  |  ph }  e.  _V  ->  (  _I  |`  { z  e.  om  |  ph }
)  e.  _V )
86, 7ax-mp 5 . . . . 5  |-  (  _I  |`  { z  e.  om  |  ph } )  e. 
_V
9 foeq1 5341 . . . . 5  |-  ( f  =  (  _I  |`  { z  e.  om  |  ph } )  ->  (
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph }  <->  (  _I  |` 
{ z  e.  om  |  ph } ) : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) )
108, 9spcev 2780 . . . 4  |-  ( (  _I  |`  { z  e.  om  |  ph }
) : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph }  ->  E. f 
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )
112, 3, 10mp2b 8 . . 3  |-  E. f 
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph }
12 simpr 109 . . . . . . 7  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  y  =  { z  e.  om  |  ph } )
1312sseq1d 3126 . . . . . 6  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
y  C_  om  <->  { z  e.  om  |  ph }  C_ 
om ) )
14 eqidd 2140 . . . . . . . 8  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  f  =  f )
15 simpl 108 . . . . . . . 8  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  x  =  { z  e.  om  |  ph } )
1614, 12, 15foeq123d 5361 . . . . . . 7  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
f : y -onto-> x  <-> 
f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) )
1716exbidv 1797 . . . . . 6  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  ( E. f  f :
y -onto-> x  <->  E. f  f : { z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) )
1813, 17anbi12d 464 . . . . 5  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
( y  C_  om  /\  E. f  f : y
-onto-> x )  <->  ( {
z  e.  om  |  ph }  C_  om  /\  E. f  f : {
z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } ) ) )
19 djueq1 6925 . . . . . . 7  |-  ( x  =  { z  e. 
om  |  ph }  ->  ( x 1o )  =  ( { z  e.  om  |  ph } 1o ) )
20 foeq3 5343 . . . . . . 7  |-  ( ( x 1o )  =  ( { z  e.  om  |  ph } 1o )  ->  ( f : om -onto->
( x 1o )  <->  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) )
2115, 19, 203syl 17 . . . . . 6  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
f : om -onto-> (
x 1o )  <->  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) )
2221exbidv 1797 . . . . 5  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  ( E. f  f : om -onto-> ( x 1o ) 
<->  E. f  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) )
2318, 22imbi12d 233 . . . 4  |-  ( ( x  =  { z  e.  om  |  ph }  /\  y  =  {
z  e.  om  |  ph } )  ->  (
( ( y  C_  om 
/\  E. f  f : y -onto-> x )  ->  E. f  f : om -onto-> ( x 1o ) )  <->  ( ( { z  e.  om  |  ph }  C_  om  /\  E. f  f : {
z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )  ->  E. f  f : om -onto-> ( { z  e.  om  |  ph } 1o ) ) ) )
24 ctssexmid.1 . . . 4  |-  ( ( y  C_  om  /\  E. f  f : y
-onto-> x )  ->  E. f 
f : om -onto-> (
x 1o ) )
256, 6, 23, 24vtocl2 2741 . . 3  |-  ( ( { z  e.  om  |  ph }  C_  om  /\  E. f  f : {
z  e.  om  |  ph } -onto-> { z  e.  om  |  ph } )  ->  E. f  f : om -onto-> ( { z  e.  om  |  ph } 1o ) )
261, 11, 25mp2an 422 . 2  |-  E. f 
f : om -onto-> ( { z  e.  om  |  ph } 1o )
274a1i 9 . . . 4  |-  ( f : om -onto-> ( { z  e.  om  |  ph } 1o )  ->  om  e. Omni )
28 id 19 . . . 4  |-  ( f : om -onto-> ( { z  e.  om  |  ph } 1o )  ->  f : om -onto-> ( { z  e.  om  |  ph } 1o ) )
2927, 28fodjuomni 7021 . . 3  |-  ( f : om -onto-> ( { z  e.  om  |  ph } 1o )  ->  ( E. w  w  e.  { z  e.  om  |  ph }  \/  { z  e.  om  |  ph }  =  (/) ) )
3029exlimiv 1577 . 2  |-  ( E. f  f : om -onto->
( { z  e. 
om  |  ph } 1o )  ->  ( E. w  w  e.  { z  e.  om  |  ph }  \/  { z  e.  om  |  ph }  =  (/) ) )
31 biidd 171 . . . . . 6  |-  ( z  =  w  ->  ( ph 
<-> 
ph ) )
3231elrab 2840 . . . . 5  |-  ( w  e.  { z  e. 
om  |  ph }  <->  ( w  e.  om  /\  ph ) )
3332simprbi 273 . . . 4  |-  ( w  e.  { z  e. 
om  |  ph }  ->  ph )
3433exlimiv 1577 . . 3  |-  ( E. w  w  e.  {
z  e.  om  |  ph }  ->  ph )
35 rabeq0 3392 . . . 4  |-  ( { z  e.  om  |  ph }  =  (/)  <->  A. z  e.  om  -.  ph )
36 peano1 4508 . . . . 5  |-  (/)  e.  om
37 elex2 2702 . . . . 5  |-  ( (/)  e.  om  ->  E. u  u  e.  om )
38 r19.3rmv 3453 . . . . 5  |-  ( E. u  u  e.  om  ->  ( -.  ph  <->  A. z  e.  om  -.  ph )
)
3936, 37, 38mp2b 8 . . . 4  |-  ( -. 
ph 
<-> 
A. z  e.  om  -.  ph )
4035, 39sylbb2 137 . . 3  |-  ( { z  e.  om  |  ph }  =  (/)  ->  -.  ph )
4134, 40orim12i 748 . 2  |-  ( ( E. w  w  e. 
{ z  e.  om  |  ph }  \/  {
z  e.  om  |  ph }  =  (/) )  -> 
( ph  \/  -.  ph ) )
4226, 30, 41mp2b 8 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   {crab 2420   _Vcvv 2686    C_ wss 3071   (/)c0 3363    _I cid 4210   omcom 4504    |` cres 4541   -onto->wfo 5121   -1-1-onto->wf1o 5122   1oc1o 6306   ⊔ cdju 6922  Omnicomni 7004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-map 6544  df-dju 6923  df-inl 6932  df-inr 6933  df-omni 7006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator