![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decbin0 | Unicode version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
decbin0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 8289 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq1i 5574 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2cn 8213 |
. . 3
![]() ![]() ![]() ![]() | |
4 | decbin.1 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 4 | nn0cni 8403 |
. . 3
![]() ![]() ![]() ![]() |
6 | 3, 3, 5 | mulassi 7226 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 6 | eqtr3i 2105 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-cnex 7165 ax-resscn 7166 ax-1cn 7167 ax-1re 7168 ax-icn 7169 ax-addcl 7170 ax-addrcl 7171 ax-mulcl 7172 ax-mulcom 7175 ax-addass 7176 ax-mulass 7177 ax-distr 7178 ax-1rid 7181 ax-rnegex 7183 ax-cnre 7185 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2987 df-in 2989 df-ss 2996 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-iota 4918 df-fv 4961 df-ov 5567 df-inn 8143 df-2 8201 df-3 8202 df-4 8203 df-n0 8392 |
This theorem is referenced by: decbin2 8734 |
Copyright terms: Public domain | W3C validator |