![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq1i | Unicode version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
oveq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | oveq1 5550 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-un 2978 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 |
This theorem is referenced by: caov12 5720 halfnqq 6662 prarloclem5 6752 m1m1sr 7000 caucvgsrlemfv 7029 caucvgsr 7040 pitonnlem1 7075 axi2m1 7103 axcnre 7109 axcaucvg 7128 mvrraddi 7392 mvlladdi 7393 negsubdi 7431 mul02 7558 mulneg1 7566 mulreim 7771 recextlem1 7808 recdivap 7873 2p2e4 8226 2times 8227 3p2e5 8240 3p3e6 8241 4p2e6 8242 4p3e7 8243 4p4e8 8244 5p2e7 8245 5p3e8 8246 5p4e9 8247 6p2e8 8248 6p3e9 8249 7p2e9 8250 1mhlfehlf 8316 8th4div3 8317 halfpm6th 8318 nneoor 8530 9p1e10 8560 dfdec10 8561 num0h 8569 numsuc 8571 dec10p 8600 numma 8601 nummac 8602 numma2c 8603 numadd 8604 numaddc 8605 nummul2c 8607 decaddci 8618 decsubi 8620 decmul1 8621 5p5e10 8628 6p4e10 8629 7p3e10 8632 8p2e10 8637 decbin0 8697 decbin2 8698 elfzp1b 9190 elfzm1b 9191 fz01or 9204 qbtwnrelemcalc 9342 fldiv4p1lem1div2 9387 mulexpzap 9613 expaddzap 9617 cu2 9670 i3 9673 iexpcyc 9676 binom2i 9680 binom3 9687 3dec 9739 faclbnd 9765 bcm1k 9784 bcp1nk 9786 bcpasc 9790 sizep1i 9834 imre 9876 crim 9883 remullem 9896 resqrexlemfp1 10033 resqrexlemover 10034 resqrexlemcalc1 10038 resqrexlemnm 10042 absexpzap 10104 absimle 10108 amgm2 10142 maxabslemlub 10231 3dvdsdec 10409 3dvds2dec 10410 odd2np1 10417 nn0o1gt2 10449 nn0o 10451 flodddiv4 10478 3lcm2e6woprm 10612 nn0gcdsq 10722 ex-fl 10741 ex-bc 10744 qdencn 10970 |
Copyright terms: Public domain | W3C validator |