ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos2 Unicode version

Theorem dftpos2 5907
Description: Alternate definition of tpos when  F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Distinct variable group:    x, F

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 5902 . . 3  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
21reseq2d 4640 . 2  |-  ( Rel 
dom  F  ->  (tpos  F  |` 
dom tpos  F )  =  (tpos 
F  |`  `' dom  F
) )
3 reltpos 5896 . . 3  |-  Rel tpos  F
4 resdm 4677 . . 3  |-  ( Rel tpos  F  ->  (tpos  F  |`  dom tpos  F )  = tpos  F
)
53, 4ax-mp 7 . 2  |-  (tpos  F  |` 
dom tpos  F )  = tpos  F
6 df-tpos 5891 . . . 4  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
76reseq1i 4636 . . 3  |-  (tpos  F  |`  `' dom  F )  =  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  |`  `' dom  F )
8 resco 4853 . . 3  |-  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) )  |`  `' dom  F )  =  ( F  o.  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F ) )
9 ssun1 3134 . . . . 5  |-  `' dom  F 
C_  ( `' dom  F  u.  { (/) } )
10 resmpt 4684 . . . . 5  |-  ( `' dom  F  C_  ( `' dom  F  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } ) )
119, 10ax-mp 7 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } )
1211coeq2i 4524 . . 3  |-  ( F  o.  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  |`  `' dom  F ) )  =  ( F  o.  ( x  e.  `' dom  F  |-> 
U. `' { x } ) )
137, 8, 123eqtri 2080 . 2  |-  (tpos  F  |`  `' dom  F )  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) )
142, 5, 133eqtr3g 2111 1  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1259    u. cun 2943    C_ wss 2945   (/)c0 3252   {csn 3403   U.cuni 3608    |-> cmpt 3846   `'ccnv 4372   dom cdm 4373    |` cres 4375    o. ccom 4377   Rel wrel 4378  tpos ctpos 5890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938  df-tpos 5891
This theorem is referenced by:  tposf12  5915
  Copyright terms: Public domain W3C validator