ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reltpos Unicode version

Theorem reltpos 5896
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reltpos  |-  Rel tpos  F

Proof of Theorem reltpos
StepHypRef Expression
1 tposssxp 5895 . 2  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
2 relxp 4475 . 2  |-  Rel  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )
3 relss 4455 . 2  |-  (tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )  ->  ( Rel  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  ->  Rel tpos  F ) )
41, 2, 3mp2 16 1  |-  Rel tpos  F
Colors of variables: wff set class
Syntax hints:    u. cun 2943    C_ wss 2945   (/)c0 3252   {csn 3403    X. cxp 4371   `'ccnv 4372   dom cdm 4373   ran crn 4374   Rel wrel 4378  tpos ctpos 5890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-mpt 3848  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-tpos 5891
This theorem is referenced by:  brtpos2  5897  dftpos2  5907  dftpos3  5908  tpostpos  5910
  Copyright terms: Public domain W3C validator