ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdstr Unicode version

Theorem dvdstr 11530
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )

Proof of Theorem dvdstr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 978 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpc 980 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
3 3simpb 979 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
4 zmulcl 9107 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
54adantl 275 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
6 oveq2 5782 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
y  x.  ( x  x.  K ) )  =  ( y  x.  M ) )
76adantr 274 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  ( y  x.  M ) )
8 eqeq2 2149 . . . . 5  |-  ( ( y  x.  M )  =  N  ->  (
( y  x.  (
x  x.  K ) )  =  ( y  x.  M )  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
98adantl 275 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( y  x.  ( x  x.  K ) )  =  ( y  x.  M
)  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
107, 9mpbid 146 . . 3  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  N )
11 zcn 9059 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
12 zcn 9059 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
13 zcn 9059 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
14 mulass 7751 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( x  x.  ( y  x.  K
) ) )
15 mul12 7891 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
x  x.  ( y  x.  K ) )  =  ( y  x.  ( x  x.  K
) ) )
1614, 15eqtrd 2172 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
1711, 12, 13, 16syl3an 1258 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
18173comr 1189 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
19183expb 1182 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
20193ad2antl1 1143 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
2120eqeq1d 2148 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  y
)  x.  K )  =  N  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
2210, 21syl5ibr 155 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( x  x.  y )  x.  K )  =  N ) )
231, 2, 3, 5, 22dvds2lem 11505 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618    x. cmul 7625   ZZcz 9054    || cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-dvds 11494
This theorem is referenced by:  dvdsmultr1  11531  dvdsmultr2  11533  4dvdseven  11614  dvdsgcdb  11701  dvdsmulgcd  11713  gcddvdslcm  11754  lcmgcdeq  11764  lcmdvdsb  11765  mulgcddvds  11775  rpmulgcd2  11776  rpdvds  11780  exprmfct  11818  rpexp  11831  phimullem  11901
  Copyright terms: Public domain W3C validator