ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzmlbp Unicode version

Theorem elfzmlbp 9220
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
Assertion
Ref Expression
elfzmlbp  |-  ( ( N  e.  ZZ  /\  K  e.  ( M ... ( M  +  N
) ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )

Proof of Theorem elfzmlbp
StepHypRef Expression
1 elfz2 9112 . . . 4  |-  ( K  e.  ( M ... ( M  +  N
) )  <->  ( ( M  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) ) )
2 znn0sub 8497 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  K  <->  ( K  -  M )  e.  NN0 ) )
32adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  <_  K 
<->  ( K  -  M
)  e.  NN0 )
)
43biimpcd 157 . . . . . . . . . . . 12  |-  ( M  <_  K  ->  (
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  e.  NN0 ) )
54adantr 270 . . . . . . . . . . 11  |-  ( ( M  <_  K  /\  K  <_  ( M  +  N ) )  -> 
( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  e.  NN0 ) )
65impcom 123 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( K  -  M
)  e.  NN0 )
7 zre 8436 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
87adantr 270 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  M  e.  RR )
98adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  M  e.  RR )
10 zre 8436 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  K  e.  RR )
1110adantl 271 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  RR )
1211adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  K  e.  RR )
13 zaddcl 8472 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
1413adantlr 461 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
1514zred 8550 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  RR )
16 letr 7261 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  ( M  +  N )  e.  RR )  ->  (
( M  <_  K  /\  K  <_  ( M  +  N ) )  ->  M  <_  ( M  +  N )
) )
179, 12, 15, 16syl3anc 1170 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N
) )  ->  M  <_  ( M  +  N
) ) )
18 zre 8436 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  RR )
19 addge01 7643 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( 0  <_  N  <->  M  <_  ( M  +  N ) ) )
208, 18, 19syl2an 283 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( 0  <_  N 
<->  M  <_  ( M  +  N ) ) )
21 elnn0z 8445 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
2221simplbi2 377 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  <_  N  ->  N  e.  NN0 ) )
2322adantl 271 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( 0  <_  N  ->  N  e.  NN0 ) )
2420, 23sylbird 168 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( M  <_ 
( M  +  N
)  ->  N  e.  NN0 ) )
2517, 24syld 44 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N
) )  ->  N  e.  NN0 ) )
2625imp 122 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  ->  N  e.  NN0 )
27 df-3an 922 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) )
28 3ancoma 927 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  <->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
2927, 28bitr3i 184 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ ) 
<->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )
)
3010, 7, 183anim123i 1124 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  RR  /\  M  e.  RR  /\  N  e.  RR ) )
3129, 30sylbi 119 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  e.  RR  /\  M  e.  RR  /\  N  e.  RR ) )
32 lesubadd2 7606 . . . . . . . . . . . . . 14  |-  ( ( K  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( K  -  M
)  <_  N  <->  K  <_  ( M  +  N ) ) )
3331, 32syl 14 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( ( K  -  M )  <_  N 
<->  K  <_  ( M  +  N ) ) )
3433biimprcd 158 . . . . . . . . . . . 12  |-  ( K  <_  ( M  +  N )  ->  (
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  <_  N ) )
3534adantl 271 . . . . . . . . . . 11  |-  ( ( M  <_  K  /\  K  <_  ( M  +  N ) )  -> 
( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  ->  ( K  -  M )  <_  N ) )
3635impcom 123 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( K  -  M
)  <_  N )
376, 26, 363jca 1119 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
)
3837exp31 356 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N )
)  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) ) )
3938com23 77 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N )
)  ->  ( N  e.  ZZ  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) ) )
40393adant2 958 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  <_  K  /\  K  <_  ( M  +  N )
)  ->  ( N  e.  ZZ  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) ) )
4140imp 122 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N ) ) )  ->  ( N  e.  ZZ  ->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) ) )
4241com12 30 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( M  e.  ZZ  /\  ( M  +  N )  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  ( M  +  N
) ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
) )
431, 42syl5bi 150 . . 3  |-  ( N  e.  ZZ  ->  ( K  e.  ( M ... ( M  +  N
) )  ->  (
( K  -  M
)  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M )  <_  N ) ) )
4443imp 122 . 2  |-  ( ( N  e.  ZZ  /\  K  e.  ( M ... ( M  +  N
) ) )  -> 
( ( K  -  M )  e.  NN0  /\  N  e.  NN0  /\  ( K  -  M
)  <_  N )
)
45 elfz2nn0 9205 . 2  |-  ( ( K  -  M )  e.  ( 0 ... N )  <->  ( ( K  -  M )  e.  NN0  /\  N  e. 
NN0  /\  ( K  -  M )  <_  N
) )
4644, 45sylibr 132 1  |-  ( ( N  e.  ZZ  /\  K  e.  ( M ... ( M  +  N
) ) )  -> 
( K  -  M
)  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    e. wcel 1434   class class class wbr 3793  (class class class)co 5543   RRcr 7042   0cc0 7043    + caddc 7046    <_ cle 7216    - cmin 7346   NN0cn0 8355   ZZcz 8432   ...cfz 9105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-fz 9106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator