ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0z Unicode version

Theorem elnn0z 9067
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elnn0z  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )

Proof of Theorem elnn0z
StepHypRef Expression
1 nn0re 8986 . . . 4  |-  ( N  e.  NN0  ->  N  e.  RR )
2 elnn0 8979 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32biimpi 119 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  e.  NN  \/  N  =  0 ) )
43orcomd 718 . . . . 5  |-  ( N  e.  NN0  ->  ( N  =  0  \/  N  e.  NN ) )
5 3mix1 1150 . . . . . 6  |-  ( N  =  0  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
6 3mix2 1151 . . . . . 6  |-  ( N  e.  NN  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
75, 6jaoi 705 . . . . 5  |-  ( ( N  =  0  \/  N  e.  NN )  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
84, 7syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
9 elz 9056 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
101, 8, 9sylanbrc 413 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
11 nn0ge0 9002 . . 3  |-  ( N  e.  NN0  ->  0  <_  N )
1210, 11jca 304 . 2  |-  ( N  e.  NN0  ->  ( N  e.  ZZ  /\  0  <_  N ) )
139simprbi 273 . . . 4  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
1413adantr 274 . . 3  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
15 0nn0 8992 . . . . . 6  |-  0  e.  NN0
16 eleq1 2202 . . . . . 6  |-  ( N  =  0  ->  ( N  e.  NN0  <->  0  e.  NN0 ) )
1715, 16mpbiri 167 . . . . 5  |-  ( N  =  0  ->  N  e.  NN0 )
1817a1i 9 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  =  0  ->  N  e.  NN0 ) )
19 nnnn0 8984 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
2019a1i 9 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  e.  NN  ->  N  e.  NN0 )
)
21 simpr 109 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
0  <_  N )
22 0red 7767 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
0  e.  RR )
23 zre 9058 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
2423adantr 274 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  N  e.  RR )
2522, 24lenltd 7880 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( 0  <_  N  <->  -.  N  <  0 ) )
2621, 25mpbid 146 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  -.  N  <  0
)
27 nngt0 8745 . . . . . . 7  |-  ( -u N  e.  NN  ->  0  <  -u N )
2824lt0neg1d 8277 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( N  <  0  <->  0  <  -u N ) )
2927, 28syl5ibr 155 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( -u N  e.  NN  ->  N  <  0 ) )
3026, 29mtod 652 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  -.  -u N  e.  NN )
3130pm2.21d 608 . . . 4  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( -u N  e.  NN  ->  N  e.  NN0 )
)
3218, 20, 313jaod 1282 . . 3  |-  ( ( N  e.  ZZ  /\  0  <_  N )  -> 
( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  ->  N  e.  NN0 ) )
3314, 32mpd 13 . 2  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  N  e.  NN0 )
3412, 33impbii 125 1  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    \/ w3o 961    = wceq 1331    e. wcel 1480   class class class wbr 3929   RRcr 7619   0cc0 7620    < clt 7800    <_ cle 7801   -ucneg 7934   NNcn 8720   NN0cn0 8977   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  nn0zrab  9079  znn0sub  9119  nn0ind  9165  fnn0ind  9167  fznn0  9893  elfz0ubfz0  9902  elfz0fzfz0  9903  fz0fzelfz0  9904  elfzmlbp  9909  difelfzle  9911  difelfznle  9912  elfzo0z  9961  fzofzim  9965  ubmelm1fzo  10003  flqge0nn0  10066  zmodcl  10117  modqmuladdnn0  10141  modsumfzodifsn  10169  uzennn  10209  zsqcl2  10370  nn0abscl  10857  geolim2  11281  cvgratnnlemabsle  11296  oexpneg  11574  oddnn02np1  11577  evennn02n  11579  nn0ehalf  11600  nn0oddm1d2  11606  divalgb  11622  dfgcd2  11702  algcvga  11732  hashgcdlem  11903  ennnfoneleminc  11924
  Copyright terms: Public domain W3C validator