ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcl Unicode version

Theorem zaddcl 9094
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )

Proof of Theorem zaddcl
StepHypRef Expression
1 elz 9056 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
21simprbi 273 . . 3  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
32adantl 275 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )
4 zcn 9059 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
54adantr 274 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
65addid1d 7911 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  =  M )
7 simpl 108 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
86, 7eqeltrd 2216 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  0 )  e.  ZZ )
9 oveq2 5782 . . . . 5  |-  ( N  =  0  ->  ( M  +  N )  =  ( M  + 
0 ) )
109eleq1d 2208 . . . 4  |-  ( N  =  0  ->  (
( M  +  N
)  e.  ZZ  <->  ( M  +  0 )  e.  ZZ ) )
118, 10syl5ibrcom 156 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( M  +  N )  e.  ZZ ) )
12 zaddcllempos 9091 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )
1312ex 114 . . . 4  |-  ( M  e.  ZZ  ->  ( N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1413adantr 274 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  NN  ->  ( M  +  N
)  e.  ZZ ) )
15 zre 9058 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
16 zaddcllemneg 9093 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
17163expia 1183 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1815, 17sylan2 284 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u N  e.  NN  ->  ( M  +  N )  e.  ZZ ) )
1911, 14, 183jaod 1282 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ ) )
203, 19mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 961    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620    + caddc 7623   -ucneg 7934   NNcn 8720   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  zsubcl  9095  zrevaddcl  9104  zdivadd  9140  zaddcld  9177  eluzaddi  9352  eluzsubi  9353  eluzadd  9354  nn0pzuz  9382  fzen  9823  fzaddel  9839  fzrev3  9867  fzrevral3  9887  elfzmlbp  9909  fzoaddel  9969  zpnn0elfzo  9984  elfzomelpfzo  10008  fzoshftral  10015  climshftlemg  11071  fsumzcl  11171  summodnegmod  11524  dvds2ln  11526  dvds2add  11527  dvdsadd  11536  dvdsadd2b  11540  addmodlteqALT  11557  3dvdsdec  11562  3dvds2dec  11563  opoe  11592  opeo  11594  ndvdsadd  11628
  Copyright terms: Public domain W3C validator