ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsupti Unicode version

Theorem eqsupti 6468
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
Hypothesis
Ref Expression
supmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
eqsupti  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
Distinct variable groups:    u, A, v, y, z    y, B, z    u, R, v, y, z    ph, u, v    y, u, v, C   
u, B, v, z
Allowed substitution hints:    ph( y, z)    C( z)

Proof of Theorem eqsupti
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 supmoti.ti . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21adantlr 461 . . . 4  |-  ( ( ( ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
3 breq1 3796 . . . . . . . . . 10  |-  ( x  =  C  ->  (
x R y  <->  C R
y ) )
43notbid 625 . . . . . . . . 9  |-  ( x  =  C  ->  ( -.  x R y  <->  -.  C R y ) )
54ralbidv 2369 . . . . . . . 8  |-  ( x  =  C  ->  ( A. y  e.  B  -.  x R y  <->  A. y  e.  B  -.  C R y ) )
6 breq2 3797 . . . . . . . . . 10  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
76imbi1d 229 . . . . . . . . 9  |-  ( x  =  C  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( y R C  ->  E. z  e.  B  y R
z ) ) )
87ralbidv 2369 . . . . . . . 8  |-  ( x  =  C  ->  ( A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z )  <->  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R
z ) ) )
95, 8anbi12d 457 . . . . . . 7  |-  ( x  =  C  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  <->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) ) )
109rspcev 2702 . . . . . 6  |-  ( ( C  e.  A  /\  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
11103impb 1135 . . . . 5  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
1211adantl 271 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
132, 12supval2ti 6467 . . 3  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  sup ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
14 3simpc 938 . . . . 5  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )
1514adantl 271 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )
16 simpr1 945 . . . . 5  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  C  e.  A )
172, 12supeuti 6466 . . . . 5  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
189riota2 5521 . . . . 5  |-  ( ( C  e.  A  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  ->  ( ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )  <-> 
( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  C ) )
1916, 17, 18syl2anc 403 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )  <-> 
( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  C ) )
2015, 19mpbid 145 . . 3  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  C )
2113, 20eqtrd 2114 . 2  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  sup ( B ,  A ,  R )  =  C )
2221ex 113 1  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   A.wral 2349   E.wrex 2350   E!wreu 2351   class class class wbr 3793   iota_crio 5498   supcsup 6454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-un 2978  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-iota 4897  df-riota 5499  df-sup 6456
This theorem is referenced by:  eqsuptid  6469  eqinfti  6492  maxabs  10233  bezoutlemsup  10542
  Copyright terms: Public domain W3C validator