ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup Unicode version

Theorem bezoutlemsup 11700
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
bezoutlemgcd.5  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
Assertion
Ref Expression
bezoutlemsup  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Distinct variable groups:    z, D    z, A    z, B    ph, z

Proof of Theorem bezoutlemsup
Dummy variables  w  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4  |-  ( ph  ->  D  e.  NN0 )
21nn0red 9034 . . 3  |-  ( ph  ->  D  e.  RR )
3 elrabi 2837 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  w  e.  ZZ )
43adantl 275 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  ZZ )
54zred 9176 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  e.  RR )
62adantr 274 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  D  e.  RR )
7 breq1 3932 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
8 breq1 3932 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
97, 8anbi12d 464 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
109elrab 2840 . . . . . . . 8  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( w  e.  ZZ  /\  ( w 
||  A  /\  w  ||  B ) ) )
1110simprbi 273 . . . . . . 7  |-  ( w  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  ->  ( w  ||  A  /\  w  ||  B ) )
1211adantl 275 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
w  ||  A  /\  w  ||  B ) )
13 breq1 3932 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  <_  D  <->  w  <_  D ) )
149, 13imbi12d 233 . . . . . . . 8  |-  ( z  =  w  ->  (
( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D )  <->  ( ( w 
||  A  /\  w  ||  B )  ->  w  <_  D ) ) )
15 bezoutlemgcd.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ZZ )
16 bezoutlemgcd.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ZZ )
17 bezoutlemgcd.4 . . . . . . . . . 10  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
18 bezoutlemgcd.5 . . . . . . . . . 10  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
1915, 16, 1, 17, 18bezoutlemle 11699 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  ZZ  ( ( z  ||  A  /\  z  ||  B
)  ->  z  <_  D ) )
2019adantr 274 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  A. z  e.  ZZ  ( ( z 
||  A  /\  z  ||  B )  ->  z  <_  D ) )
21 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ZZ )  ->  w  e.  ZZ )
2214, 20, 21rspcdva 2794 . . . . . . 7  |-  ( (
ph  /\  w  e.  ZZ )  ->  ( ( w  ||  A  /\  w  ||  B )  ->  w  <_  D ) )
233, 22sylan2 284 . . . . . 6  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  (
( w  ||  A  /\  w  ||  B )  ->  w  <_  D
) )
2412, 23mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  w  <_  D )
255, 6, 24lensymd 7887 . . . 4  |-  ( (
ph  /\  w  e.  { z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) } )  ->  -.  D  <  w )
2625ralrimiva 2505 . . 3  |-  ( ph  ->  A. w  e.  {
z  e.  ZZ  | 
( z  ||  A  /\  z  ||  B ) }  -.  D  < 
w )
271nn0zd 9174 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
28 iddvds 11509 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  D  ||  D )
2927, 28syl 14 . . . . . . . . 9  |-  ( ph  ->  D  ||  D )
30 breq1 3932 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
z  ||  D  <->  D  ||  D
) )
31 breq1 3932 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  A  <->  D  ||  A
) )
32 breq1 3932 . . . . . . . . . . . 12  |-  ( z  =  D  ->  (
z  ||  B  <->  D  ||  B
) )
3331, 32anbi12d 464 . . . . . . . . . . 11  |-  ( z  =  D  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( D  ||  A  /\  D  ||  B ) ) )
3430, 33bibi12d 234 . . . . . . . . . 10  |-  ( z  =  D  ->  (
( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) ) )
3534, 17, 27rspcdva 2794 . . . . . . . . 9  |-  ( ph  ->  ( D  ||  D  <->  ( D  ||  A  /\  D  ||  B ) ) )
3629, 35mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( D  ||  A  /\  D  ||  B ) )
3736ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  ||  A  /\  D  ||  B ) )
381ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  NN0 )
3938nn0zd 9174 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  ZZ )
4033elrab3 2841 . . . . . . . 8  |-  ( D  e.  ZZ  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4139, 40syl 14 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  ( D  e.  { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) }  <->  ( D  ||  A  /\  D  ||  B ) ) )
4237, 41mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } )
43 breq2 3933 . . . . . . 7  |-  ( u  =  D  ->  (
w  <  u  <->  w  <  D ) )
4443rspcev 2789 . . . . . 6  |-  ( ( D  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) }  /\  w  <  D
)  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4542, 44sylancom 416 . . . . 5  |-  ( ( ( ph  /\  w  e.  RR )  /\  w  <  D )  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u )
4645ex 114 . . . 4  |-  ( (
ph  /\  w  e.  RR )  ->  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )
4746ralrimiva 2505 . . 3  |-  ( ph  ->  A. w  e.  RR  ( w  <  D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } w  <  u ) )
48 lttri3 7847 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4948adantl 275 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
5049eqsupti 6883 . . 3  |-  ( ph  ->  ( ( D  e.  RR  /\  A. w  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) }  -.  D  <  w  /\  A. w  e.  RR  ( w  < 
D  ->  E. u  e.  { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } w  < 
u ) )  ->  sup ( { z  e.  ZZ  |  ( z 
||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D ) )
512, 26, 47, 50mp3and 1318 . 2  |-  ( ph  ->  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B ) } ,  RR ,  <  )  =  D )
5251eqcomd 2145 1  |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z  ||  A  /\  z  ||  B
) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   class class class wbr 3929   supcsup 6869   RRcr 7622   0cc0 7623    < clt 7803    <_ cle 7804   NN0cn0 8980   ZZcz 9057    || cdvds 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-sup 6871  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-n0 8981  df-z 9058  df-q 9415  df-dvds 11497
This theorem is referenced by:  dfgcd3  11701
  Copyright terms: Public domain W3C validator