ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgf Unicode version

Theorem eucalgf 10644
Description: Domain and codomain of the step function  E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgf  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Distinct variable group:    x, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 8186 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  =/=  0 )
21adantl 271 . . . . . . . 8  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  =/=  0 )
32neneqd 2270 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  -.  y  =  0 )
43iffalsed 3378 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  <. y ,  ( x  mod  y )
>. )
5 nnnn0 8414 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  NN0 )
65adantl 271 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  y  e.  NN0 )
7 nn0z 8504 . . . . . . . 8  |-  ( x  e.  NN0  ->  x  e.  ZZ )
8 zmodcl 9478 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
97, 8sylan 277 . . . . . . 7  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  mod  y
)  e.  NN0 )
10 opelxpi 4422 . . . . . . 7  |-  ( ( y  e.  NN0  /\  ( x  mod  y )  e.  NN0 )  ->  <. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
116, 9, 10syl2anc 403 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN )  -> 
<. y ,  ( x  mod  y ) >.  e.  ( NN0  X.  NN0 ) )
124, 11eqeltrd 2159 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
1312adantlr 461 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  e.  NN )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) )
14 iftrue 3373 . . . . . 6  |-  ( y  =  0  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  =  <. x ,  y >. )
1514adantl 271 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  =  <. x ,  y >. )
16 opelxpi 4422 . . . . . 6  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1716adantr 270 . . . . 5  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  <. x ,  y >.  e.  ( NN0  X.  NN0 ) )
1815, 17eqeltrd 2159 . . . 4  |-  ( ( ( x  e.  NN0  /\  y  e.  NN0 )  /\  y  =  0
)  ->  if (
y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. )  e.  ( NN0  X.  NN0 ) )
19 simpr 108 . . . . 5  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
20 elnn0 8409 . . . . 5  |-  ( y  e.  NN0  <->  ( y  e.  NN  \/  y  =  0 ) )
2119, 20sylib 120 . . . 4  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( y  e.  NN  \/  y  =  0
) )
2213, 18, 21mpjaodan 745 . . 3  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  ->  if ( y  =  0 ,  <. x ,  y
>. ,  <. y ,  ( x  mod  y
) >. )  e.  ( NN0  X.  NN0 )
)
2322rgen2a 2422 . 2  |-  A. x  e.  NN0  A. y  e. 
NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 )
24 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2524fmpt2 5878 . 2  |-  ( A. x  e.  NN0  A. y  e.  NN0  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  e.  ( NN0  X.  NN0 ) 
<->  E : ( NN0 
X.  NN0 ) --> ( NN0 
X.  NN0 ) )
2623, 25mpbi 143 1  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    \/ wo 662    = wceq 1285    e. wcel 1434    =/= wne 2249   A.wral 2353   ifcif 3368   <.cop 3419    X. cxp 4389   -->wf 4948  (class class class)co 5563    |-> cmpt2 5565   0cc0 7095   NNcn 8158   NN0cn0 8407   ZZcz 8484    mod cmo 9456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-q 8838  df-rp 8868  df-fl 9404  df-mod 9457
This theorem is referenced by:  eucialgcvga  10647  eucialg  10648
  Copyright terms: Public domain W3C validator