ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnne0 Unicode version

Theorem nnne0 8134
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.)
Assertion
Ref Expression
nnne0  |-  ( A  e.  NN  ->  A  =/=  0 )

Proof of Theorem nnne0
StepHypRef Expression
1 0nnn 8133 . . 3  |-  -.  0  e.  NN
2 eleq1 2142 . . 3  |-  ( A  =  0  ->  ( A  e.  NN  <->  0  e.  NN ) )
31, 2mtbiri 633 . 2  |-  ( A  =  0  ->  -.  A  e.  NN )
43necon2ai 2300 1  |-  ( A  e.  NN  ->  A  =/=  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434    =/= wne 2246   0cc0 7043   NNcn 8106
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1re 7132  ax-addrcl 7135  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-pre-ltirr 7150  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-xp 4377  df-cnv 4379  df-iota 4897  df-fv 4940  df-ov 5546  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-inn 8107
This theorem is referenced by:  nnne0d  8150  divfnzn  8787  qreccl  8808  fzo1fzo0n0  9269  expinnval  9576  expnegap0  9581  sizenncl  9820  dvdsval3  10344  nndivdvds  10346  modmulconst  10372  dvdsdivcl  10395  divalg2  10470  ndvdssub  10474  nndvdslegcd  10501  divgcdz  10507  divgcdnn  10510  gcdzeq  10555  eucalgf  10581  eucalginv  10582  lcmgcdlem  10603  qredeu  10623  cncongr1  10629  cncongr2  10630
  Copyright terms: Public domain W3C validator