Proof of Theorem expaddzap
Step | Hyp | Ref
| Expression |
1 | | elznn0nn 8446 |
. . 3

       |
2 | | elznn0nn 8446 |
. . . 4

       |
3 | | expadd 9615 |
. . . . . . . 8
 
                   |
4 | 3 | 3expia 1141 |
. . . . . . 7
 
     
               |
5 | 4 | adantlr 461 |
. . . . . 6
   # 
     
               |
6 | | expaddzaplem 9616 |
. . . . . . 7
   #  

                    |
7 | 6 | 3expia 1141 |
. . . . . 6
   #  

  
                   |
8 | 5, 7 | jaodan 744 |
. . . . 5
   #  
 
       
               |
9 | | expaddzaplem 9616 |
. . . . . . . . 9
   #  

                    |
10 | | simp3 941 |
. . . . . . . . . . . 12
   #  

    |
11 | 10 | nn0cnd 8410 |
. . . . . . . . . . 11
   #  

    |
12 | | simp2l 965 |
. . . . . . . . . . . 12
   #  

    |
13 | 12 | recnd 7209 |
. . . . . . . . . . 11
   #  

    |
14 | 11, 13 | addcomd 7326 |
. . . . . . . . . 10
   #  

        |
15 | 14 | oveq2d 5559 |
. . . . . . . . 9
   #  

                |
16 | | simp1l 963 |
. . . . . . . . . . 11
   #  

    |
17 | | expcl 9591 |
. . . . . . . . . . 11
 
       |
18 | 16, 10, 17 | syl2anc 403 |
. . . . . . . . . 10
   #  

        |
19 | | simp1r 964 |
. . . . . . . . . . 11
   #  

  #   |
20 | 13 | negnegd 7477 |
. . . . . . . . . . . 12
   #  

      |
21 | | simp2r 966 |
. . . . . . . . . . . . . 14
   #  

     |
22 | 21 | nnnn0d 8408 |
. . . . . . . . . . . . 13
   #  

     |
23 | | nn0negz 8466 |
. . . . . . . . . . . . 13
 
    |
24 | 22, 23 | syl 14 |
. . . . . . . . . . . 12
   #  

      |
25 | 20, 24 | eqeltrrd 2157 |
. . . . . . . . . . 11
   #  

    |
26 | | expclzap 9598 |
. . . . . . . . . . 11
  #
       |
27 | 16, 19, 25, 26 | syl3anc 1170 |
. . . . . . . . . 10
   #  

        |
28 | 18, 27 | mulcomd 7202 |
. . . . . . . . 9
   #  

                        |
29 | 9, 15, 28 | 3eqtr4d 2124 |
. . . . . . . 8
   #  

                    |
30 | 29 | 3expia 1141 |
. . . . . . 7
   #  

  
                   |
31 | 30 | impancom 256 |
. . . . . 6
   # 
                        |
32 | | simp2l 965 |
. . . . . . . . . . . . . . 15
   #  

    
  |
33 | 32 | recnd 7209 |
. . . . . . . . . . . . . 14
   #  

    
  |
34 | | simp3l 967 |
. . . . . . . . . . . . . . 15
   #  

    
  |
35 | 34 | recnd 7209 |
. . . . . . . . . . . . . 14
   #  

    
  |
36 | 33, 35 | negdid 7499 |
. . . . . . . . . . . . 13
   #  

         
    |
37 | 36 | oveq2d 5559 |
. . . . . . . . . . . 12
   #  

         
            |
38 | | simp1l 963 |
. . . . . . . . . . . . 13
   #  

    
  |
39 | | simp2r 966 |
. . . . . . . . . . . . . 14
   #  

        |
40 | 39 | nnnn0d 8408 |
. . . . . . . . . . . . 13
   #  

        |
41 | | simp3r 968 |
. . . . . . . . . . . . . 14
   #  

        |
42 | 41 | nnnn0d 8408 |
. . . . . . . . . . . . 13
   #  

        |
43 | | expadd 9615 |
. . . . . . . . . . . . 13
                           |
44 | 38, 40, 42, 43 | syl3anc 1170 |
. . . . . . . . . . . 12
   #  

                           |
45 | 37, 44 | eqtrd 2114 |
. . . . . . . . . . 11
   #  

         
                |
46 | 45 | oveq2d 5559 |
. . . . . . . . . 10
   #  

                              |
47 | | 1t1e1 8251 |
. . . . . . . . . . 11
   |
48 | 47 | oveq1i 5553 |
. . . . . . . . . 10
                               |
49 | 46, 48 | syl6eqr 2132 |
. . . . . . . . 9
   #  

                                |
50 | | expcl 9591 |
. . . . . . . . . . 11
           |
51 | 38, 40, 50 | syl2anc 403 |
. . . . . . . . . 10
   #  

            |
52 | | simp1r 964 |
. . . . . . . . . . 11
   #  

     #   |
53 | 40 | nn0zd 8548 |
. . . . . . . . . . 11
   #  

        |
54 | | expap0i 9605 |
. . . . . . . . . . 11
  #
       #   |
55 | 38, 52, 53, 54 | syl3anc 1170 |
. . . . . . . . . 10
   #  

          #   |
56 | | expcl 9591 |
. . . . . . . . . . 11
           |
57 | 38, 42, 56 | syl2anc 403 |
. . . . . . . . . 10
   #  

            |
58 | 42 | nn0zd 8548 |
. . . . . . . . . . 11
   #  

        |
59 | | expap0i 9605 |
. . . . . . . . . . 11
  #
       #   |
60 | 38, 52, 58, 59 | syl3anc 1170 |
. . . . . . . . . 10
   #  

          #   |
61 | | ax-1cn 7131 |
. . . . . . . . . . 11
 |
62 | | divmuldivap 7867 |
. . . . . . . . . . 11
                #             #   
                                  |
63 | 61, 61, 62 | mpanl12 427 |
. . . . . . . . . 10
             #             #                                     |
64 | 51, 55, 57, 60, 63 | syl22anc 1171 |
. . . . . . . . 9
   #  

                                       |
65 | 49, 64 | eqtr4d 2117 |
. . . . . . . 8
   #  

                                |
66 | 33, 35 | addcld 7200 |
. . . . . . . . 9
   #  

         |
67 | 40, 42 | nn0addcld 8412 |
. . . . . . . . . 10
   #  

           |
68 | 36, 67 | eqeltrd 2156 |
. . . . . . . . 9
   #  

          |
69 | | expineg2 9582 |
. . . . . . . . 9
   #         
                 |
70 | 38, 52, 66, 68, 69 | syl22anc 1171 |
. . . . . . . 8
   #  

        
             |
71 | | expineg2 9582 |
. . . . . . . . . 10
   #  

               |
72 | 38, 52, 33, 40, 71 | syl22anc 1171 |
. . . . . . . . 9
   #  

                  |
73 | | expineg2 9582 |
. . . . . . . . . 10
   #  

               |
74 | 38, 52, 35, 42, 73 | syl22anc 1171 |
. . . . . . . . 9
   #  

                  |
75 | 72, 74 | oveq12d 5561 |
. . . . . . . 8
   #  

                                 |
76 | 65, 70, 75 | 3eqtr4d 2124 |
. . . . . . 7
   #  

        
              |
77 | 76 | 3expia 1141 |
. . . . . 6
   #  

    
                    |
78 | 31, 77 | jaodan 744 |
. . . . 5
   #  
 
                          |
79 | 8, 78 | jaod 670 |
. . . 4
   #  
 
    
       
               |
80 | 2, 79 | sylan2b 281 |
. . 3
   # 
  
       
               |
81 | 1, 80 | syl5bi 150 |
. 2
   # 
     
               |
82 | 81 | impr 371 |
1
   #  
 
                  |