![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaod | Unicode version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaod.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
jaod |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | com12 30 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | jaod.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | com12 30 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | jaoi 669 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | com12 30 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: mpjaod 671 jaao 672 orel2 678 pm2.621 699 mtord 730 jaodan 744 pm2.63 747 pm2.74 754 dedlema 911 dedlemb 912 oplem1 917 opthpr 3572 trsucss 4186 ordsucim 4252 onsucelsucr 4260 0elnn 4366 xpsspw 4478 relop 4514 fununi 4998 poxp 5884 nntri1 6140 nnsseleq 6145 nnmordi 6155 nnaordex 6166 nnm00 6168 swoord2 6202 nneneq 6392 elni2 6566 prubl 6738 distrlem4prl 6836 distrlem4pru 6837 ltxrlt 7245 recexre 7745 remulext1 7766 mulext1 7779 un0addcl 8388 un0mulcl 8389 elnnz 8442 zleloe 8479 zindd 8546 uzsplit 9185 fzm1 9193 expcl2lemap 9585 expnegzap 9607 expaddzap 9617 expmulzap 9619 nn0opthd 9746 facdiv 9762 facwordi 9764 bcpasc 9790 recvguniq 10019 absexpzap 10104 maxabslemval 10232 isumrblem 10337 ordvdsmul 10381 gcdaddm 10519 lcmdvds 10605 dvdsprime 10648 prmdvdsexpr 10673 prmfac1 10675 decidin 10758 bj-nntrans 10904 bj-nnelirr 10906 bj-findis 10932 |
Copyright terms: Public domain | W3C validator |