ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxmet Unicode version

Theorem isxmet 12514
Description: Express the predicate " D is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
isxmet  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
Distinct variable groups:    x, y, z, D    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem isxmet
Dummy variables  d  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2697 . . . . 5  |-  ( X  e.  A  ->  X  e.  _V )
2 fnmap 6549 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
3 xrex 9639 . . . . . . . 8  |-  RR*  e.  _V
4 sqxpexg 4655 . . . . . . . 8  |-  ( X  e.  _V  ->  ( X  X.  X )  e. 
_V )
5 fnovex 5804 . . . . . . . 8  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  RR*  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( RR*  ^m  ( X  X.  X ) )  e. 
_V )
62, 3, 4, 5mp3an12i 1319 . . . . . . 7  |-  ( X  e.  _V  ->  ( RR*  ^m  ( X  X.  X ) )  e. 
_V )
7 rabexg 4071 . . . . . . 7  |-  ( (
RR*  ^m  ( X  X.  X ) )  e. 
_V  ->  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  e.  _V )
86, 7syl 14 . . . . . 6  |-  ( X  e.  _V  ->  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  e.  _V )
9 xpeq12 4558 . . . . . . . . . 10  |-  ( ( t  =  X  /\  t  =  X )  ->  ( t  X.  t
)  =  ( X  X.  X ) )
109anidms 394 . . . . . . . . 9  |-  ( t  =  X  ->  (
t  X.  t )  =  ( X  X.  X ) )
1110oveq2d 5790 . . . . . . . 8  |-  ( t  =  X  ->  ( RR*  ^m  ( t  X.  t ) )  =  ( RR*  ^m  ( X  X.  X ) ) )
12 raleq 2626 . . . . . . . . . . 11  |-  ( t  =  X  ->  ( A. z  e.  t 
( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) )
1312anbi2d 459 . . . . . . . . . 10  |-  ( t  =  X  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
1413raleqbi1dv 2634 . . . . . . . . 9  |-  ( t  =  X  ->  ( A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
1514raleqbi1dv 2634 . . . . . . . 8  |-  ( t  =  X  ->  ( A. x  e.  t  A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
1611, 15rabeqbidv 2681 . . . . . . 7  |-  ( t  =  X  ->  { d  e.  ( RR*  ^m  (
t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
17 df-xmet 12157 . . . . . . 7  |-  *Met  =  ( t  e. 
_V  |->  { d  e.  ( RR*  ^m  (
t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  ( x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
1816, 17fvmptg 5497 . . . . . 6  |-  ( ( X  e.  _V  /\  { d  e.  ( RR*  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) ) }  e.  _V )  ->  ( *Met `  X )  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
198, 18mpdan 417 . . . . 5  |-  ( X  e.  _V  ->  ( *Met `  X )  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
201, 19syl 14 . . . 4  |-  ( X  e.  A  ->  ( *Met `  X )  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) } )
2120eleq2d 2209 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  D  e.  { d  e.  ( RR*  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) ) } ) )
22 oveq 5780 . . . . . . . 8  |-  ( d  =  D  ->  (
x d y )  =  ( x D y ) )
2322eqeq1d 2148 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  =  0  <->  (
x D y )  =  0 ) )
2423bibi1d 232 . . . . . 6  |-  ( d  =  D  ->  (
( ( x d y )  =  0  <-> 
x  =  y )  <-> 
( ( x D y )  =  0  <-> 
x  =  y ) ) )
25 oveq 5780 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d x )  =  ( z D x ) )
26 oveq 5780 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d y )  =  ( z D y ) )
2725, 26oveq12d 5792 . . . . . . . 8  |-  ( d  =  D  ->  (
( z d x ) +e ( z d y ) )  =  ( ( z D x ) +e ( z D y ) ) )
2822, 27breq12d 3942 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <-> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
2928ralbidv 2437 . . . . . 6  |-  ( d  =  D  ->  ( A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
3024, 29anbi12d 464 . . . . 5  |-  ( d  =  D  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
31302ralbidv 2459 . . . 4  |-  ( d  =  D  ->  ( A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
3231elrab 2840 . . 3  |-  ( D  e.  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
3321, 32syl6bb 195 . 2  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
34 sqxpexg 4655 . . . 4  |-  ( X  e.  A  ->  ( X  X.  X )  e. 
_V )
35 elmapg 6555 . . . 4  |-  ( (
RR*  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
363, 34, 35sylancr 410 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3736anbi1d 460 . 2  |-  ( X  e.  A  ->  (
( D  e.  (
RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
3833, 37bitrd 187 1  |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   {crab 2420   _Vcvv 2686   class class class wbr 3929    X. cxp 4537    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^m cmap 6542   0cc0 7620   RR*cxr 7799    <_ cle 7801   +ecxad 9557   *Metcxmet 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-xmet 12157
This theorem is referenced by:  isxmetd  12516  xmetf  12519  ismet2  12523  xmeteq0  12528  xmettri2  12530
  Copyright terms: Public domain W3C validator