ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodju0 Unicode version

Theorem fodju0 7019
Description: Lemma for fodjuomni 7021 and fodjumkv 7034. A condition which shows that  A is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
fodjuf.p  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
fodju0.1  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
Assertion
Ref Expression
fodju0  |-  ( ph  ->  A  =  (/) )
Distinct variable groups:    ph, y, z   
y, O, z    z, A    z, B    z, F    y, A    y, F    w, O    w, P
Allowed substitution hints:    ph( w)    A( w)    B( y, w)    P( y,
z)    F( w)

Proof of Theorem fodju0
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjuf.fo . . . . 5  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 djulcl 6936 . . . . 5  |-  ( u  e.  A  ->  (inl `  u )  e.  ( A B ) )
3 foelrn 5654 . . . . 5  |-  ( ( F : O -onto-> ( A B )  /\  (inl `  u )  e.  ( A B ) )  ->  E. v  e.  O  (inl `  u )  =  ( F `  v
) )
41, 2, 3syl2an 287 . . . 4  |-  ( (
ph  /\  u  e.  A )  ->  E. v  e.  O  (inl `  u
)  =  ( F `
 v ) )
5 fodjuf.p . . . . . 6  |-  P  =  ( y  e.  O  |->  if ( E. z  e.  A  ( F `  y )  =  (inl
`  z ) ,  (/) ,  1o ) )
6 fveqeq2 5430 . . . . . . . 8  |-  ( y  =  v  ->  (
( F `  y
)  =  (inl `  z )  <->  ( F `  v )  =  (inl
`  z ) ) )
76rexbidv 2438 . . . . . . 7  |-  ( y  =  v  ->  ( E. z  e.  A  ( F `  y )  =  (inl `  z
)  <->  E. z  e.  A  ( F `  v )  =  (inl `  z
) ) )
87ifbid 3493 . . . . . 6  |-  ( y  =  v  ->  if ( E. z  e.  A  ( F `  y )  =  (inl `  z
) ,  (/) ,  1o )  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
9 simprl 520 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
v  e.  O )
10 peano1 4508 . . . . . . . 8  |-  (/)  e.  om
1110a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/) 
e.  om )
12 1onn 6416 . . . . . . . 8  |-  1o  e.  om
1312a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  1o  e.  om )
141fodjuomnilemdc 7016 . . . . . . . 8  |-  ( (
ph  /\  v  e.  O )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
1514ad2ant2r 500 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> DECID  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
1611, 13, 15ifcldcd 3507 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  e. 
om )
175, 8, 9, 16fvmptd3 5514 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  if ( E. z  e.  A  ( F `  v )  =  (inl `  z
) ,  (/) ,  1o ) )
18 fveqeq2 5430 . . . . . 6  |-  ( w  =  v  ->  (
( P `  w
)  =  1o  <->  ( P `  v )  =  1o ) )
19 fodju0.1 . . . . . . 7  |-  ( ph  ->  A. w  e.  O  ( P `  w )  =  1o )
2019ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  A. w  e.  O  ( P `  w )  =  1o )
2118, 20, 9rspcdva 2794 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( P `  v
)  =  1o )
22 simplr 519 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  u  e.  A )
23 simprr 521 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
(inl `  u )  =  ( F `  v ) )
2423eqcomd 2145 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  -> 
( F `  v
)  =  (inl `  u ) )
25 fveq2 5421 . . . . . . . 8  |-  ( z  =  u  ->  (inl `  z )  =  (inl
`  u ) )
2625rspceeqv 2807 . . . . . . 7  |-  ( ( u  e.  A  /\  ( F `  v )  =  (inl `  u
) )  ->  E. z  e.  A  ( F `  v )  =  (inl
`  z ) )
2722, 24, 26syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  E. z  e.  A  ( F `  v )  =  (inl `  z
) )
2827iftrued 3481 . . . . 5  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  if ( E. z  e.  A  ( F `  v )  =  (inl
`  z ) ,  (/) ,  1o )  =  (/) )
2917, 21, 283eqtr3rd 2181 . . . 4  |-  ( ( ( ph  /\  u  e.  A )  /\  (
v  e.  O  /\  (inl `  u )  =  ( F `  v
) ) )  ->  (/)  =  1o )
304, 29rexlimddv 2554 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  (/)  =  1o )
31 1n0 6329 . . . . 5  |-  1o  =/=  (/)
3231nesymi 2354 . . . 4  |-  -.  (/)  =  1o
3332a1i 9 . . 3  |-  ( (
ph  /\  u  e.  A )  ->  -.  (/)  =  1o )
3430, 33pm2.65da 650 . 2  |-  ( ph  ->  -.  u  e.  A
)
3534eq0rdv 3407 1  |-  ( ph  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 819    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   (/)c0 3363   ifcif 3474    |-> cmpt 3989   omcom 4504   -onto->wfo 5121   ` cfv 5123   1oc1o 6306   ⊔ cdju 6922  inlcinl 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  fodjuomnilemres  7020  fodjumkvlemres  7033
  Copyright terms: Public domain W3C validator