ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemdc Unicode version

Theorem fodjuomnilemdc 7016
Description: Lemma for fodjuomni 7021. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypothesis
Ref Expression
fodjuomnilemdc.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
Assertion
Ref Expression
fodjuomnilemdc  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Distinct variable groups:    z, A    z, B    z, F    z, O    z, X    ph, z

Proof of Theorem fodjuomnilemdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fodjuomnilemdc.fo . . . . . 6  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 fof 5345 . . . . . 6  |-  ( F : O -onto-> ( A B )  ->  F : O --> ( A B ) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  F : O --> ( A B ) )
43ffvelrnda 5555 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( F `  X )  e.  ( A B )
)
5 djur 6954 . . . 4  |-  ( ( F `  X )  e.  ( A B )  <-> 
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) ) )
64, 5sylib 121 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  E. z  e.  B  ( F `  X )  =  (inr
`  z ) ) )
7 nfv 1508 . . . . . . . 8  |-  F/ z ( ph  /\  X  e.  O )
8 nfre1 2476 . . . . . . . 8  |-  F/ z E. z  e.  B  ( F `  X )  =  (inr `  z
)
97, 8nfan 1544 . . . . . . 7  |-  F/ z ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z
) )
10 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. z  e.  B  ( F `  X )  =  (inr
`  z ) )
11 fveq2 5421 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (inr `  z )  =  (inr
`  w ) )
1211eqeq2d 2151 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  X
)  =  (inr `  z )  <->  ( F `  X )  =  (inr
`  w ) ) )
1312cbvrexv 2655 . . . . . . . . . 10  |-  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  <->  E. w  e.  B  ( F `  X )  =  (inr `  w
) )
1410, 13sylib 121 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. w  e.  B  ( F `  X )  =  (inr
`  w ) )
15 vex 2689 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
16 vex 2689 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
17 djune 6963 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  _V  /\  w  e.  _V )  ->  (inl `  z )  =/=  (inr `  w )
)
1815, 16, 17mp2an 422 . . . . . . . . . . . . . 14  |-  (inl `  z )  =/=  (inr `  w )
19 neeq2 2322 . . . . . . . . . . . . . 14  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( (inl `  z )  =/=  ( F `  X )  <->  (inl
`  z )  =/=  (inr `  w )
) )
2018, 19mpbiri 167 . . . . . . . . . . . . 13  |-  ( ( F `  X )  =  (inr `  w
)  ->  (inl `  z
)  =/=  ( F `
 X ) )
2120necomd 2394 . . . . . . . . . . . 12  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( F `  X )  =/=  (inl `  z ) )
2221neneqd 2329 . . . . . . . . . . 11  |-  ( ( F `  X )  =  (inr `  w
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2322a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2423rexlimdvw 2553 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( E. w  e.  B  ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2514, 24mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2625a1d 22 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( z  e.  A  ->  -.  ( F `  X )  =  (inl `  z )
) )
279, 26ralrimi 2503 . . . . . 6  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  A. z  e.  A  -.  ( F `  X )  =  (inl `  z )
)
28 ralnex 2426 . . . . . 6  |-  ( A. z  e.  A  -.  ( F `  X )  =  (inl `  z
)  <->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
2927, 28sylib 121 . . . . 5  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
3029ex 114 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3130orim2d 777 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  (
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) ) )
326, 31mpd 13 . 2  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) )
33 df-dc 820 . 2  |-  (DECID  E. z  e.  A  ( F `  X )  =  (inl
`  z )  <->  ( E. z  e.  A  ( F `  X )  =  (inl `  z )  \/  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3432, 33sylibr 133 1  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416   E.wrex 2417   _Vcvv 2686   -->wf 5119   -onto->wfo 5121   ` cfv 5123   ⊔ cdju 6922  inlcinl 6930  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  fodjuf  7017  fodjum  7018  fodju0  7019
  Copyright terms: Public domain W3C validator