ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01or Unicode version

Theorem fz01or 9894
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
Assertion
Ref Expression
fz01or  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )

Proof of Theorem fz01or
StepHypRef Expression
1 1eluzge0 9372 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
2 eluzfz1 9814 . . . . . 6  |-  ( 1  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 1
) )
31, 2ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 1
)
4 fzsplit 9834 . . . . 5  |-  ( 0  e.  ( 0 ... 1 )  ->  (
0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
53, 4ax-mp 5 . . . 4  |-  ( 0 ... 1 )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) )
65eleq2i 2206 . . 3  |-  ( A  e.  ( 0 ... 1 )  <->  A  e.  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... 1 ) ) )
7 elun 3217 . . 3  |-  ( A  e.  ( ( 0 ... 0 )  u.  ( ( 0  +  1 ) ... 1
) )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
86, 7bitri 183 . 2  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  e.  ( 0 ... 0
)  \/  A  e.  ( ( 0  +  1 ) ... 1
) ) )
9 elfz1eq 9818 . . . 4  |-  ( A  e.  ( 0 ... 0 )  ->  A  =  0 )
10 0nn0 8995 . . . . . . 7  |-  0  e.  NN0
11 nn0uz 9363 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1210, 11eleqtri 2214 . . . . . 6  |-  0  e.  ( ZZ>= `  0 )
13 eluzfz1 9814 . . . . . 6  |-  ( 0  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... 0
) )
1412, 13ax-mp 5 . . . . 5  |-  0  e.  ( 0 ... 0
)
15 eleq1 2202 . . . . 5  |-  ( A  =  0  ->  ( A  e.  ( 0 ... 0 )  <->  0  e.  ( 0 ... 0
) ) )
1614, 15mpbiri 167 . . . 4  |-  ( A  =  0  ->  A  e.  ( 0 ... 0
) )
179, 16impbii 125 . . 3  |-  ( A  e.  ( 0 ... 0 )  <->  A  = 
0 )
18 0p1e1 8837 . . . . . 6  |-  ( 0  +  1 )  =  1
1918oveq1i 5784 . . . . 5  |-  ( ( 0  +  1 ) ... 1 )  =  ( 1 ... 1
)
2019eleq2i 2206 . . . 4  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  e.  ( 1 ... 1
) )
21 elfz1eq 9818 . . . . 5  |-  ( A  e.  ( 1 ... 1 )  ->  A  =  1 )
22 1nn 8734 . . . . . . . 8  |-  1  e.  NN
23 nnuz 9364 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23eleqtri 2214 . . . . . . 7  |-  1  e.  ( ZZ>= `  1 )
25 eluzfz1 9814 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... 1
) )
2624, 25ax-mp 5 . . . . . 6  |-  1  e.  ( 1 ... 1
)
27 eleq1 2202 . . . . . 6  |-  ( A  =  1  ->  ( A  e.  ( 1 ... 1 )  <->  1  e.  ( 1 ... 1
) ) )
2826, 27mpbiri 167 . . . . 5  |-  ( A  =  1  ->  A  e.  ( 1 ... 1
) )
2921, 28impbii 125 . . . 4  |-  ( A  e.  ( 1 ... 1 )  <->  A  = 
1 )
3020, 29bitri 183 . . 3  |-  ( A  e.  ( ( 0  +  1 ) ... 1 )  <->  A  = 
1 )
3117, 30orbi12i 753 . 2  |-  ( ( A  e.  ( 0 ... 0 )  \/  A  e.  ( ( 0  +  1 ) ... 1 ) )  <-> 
( A  =  0  \/  A  =  1 ) )
328, 31bitri 183 1  |-  ( A  e.  ( 0 ... 1 )  <->  ( A  =  0  \/  A  =  1 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480    u. cun 3069   ` cfv 5123  (class class class)co 5774   0cc0 7623   1c1 7624    + caddc 7626   NNcn 8723   NN0cn0 8980   ZZ>=cuz 9329   ...cfz 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330  df-fz 9794
This theorem is referenced by:  hashfiv01gt1  10531  mod2eq1n2dvds  11579
  Copyright terms: Public domain W3C validator