ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxmetd Unicode version

Theorem isxmetd 12516
Description: Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0  |-  ( ph  ->  X  e.  _V )
isxmetd.1  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
isxmetd.2  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
isxmetd.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
Assertion
Ref Expression
isxmetd  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Distinct variable groups:    x, y, z, D    ph, x, y, z   
x, X, y, z

Proof of Theorem isxmetd
StepHypRef Expression
1 isxmetd.1 . 2  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
2 isxmetd.2 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
3 isxmetd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
433exp2 1203 . . . . . 6  |-  ( ph  ->  ( x  e.  X  ->  ( y  e.  X  ->  ( z  e.  X  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) ) )
54imp32 255 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( z  e.  X  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
65ralrimiv 2504 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
72, 6jca 304 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) )
87ralrimivva 2514 . 2  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) )
9 isxmetd.0 . . 3  |-  ( ph  ->  X  e.  _V )
10 isxmet 12514 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
119, 10syl 14 . 2  |-  ( ph  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
121, 8, 11mpbir2and 928 1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686   class class class wbr 3929    X. cxp 4537   -->wf 5119   ` cfv 5123  (class class class)co 5774   0cc0 7620   RR*cxr 7799    <_ cle 7801   +ecxad 9557   *Metcxmet 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-xmet 12157
This theorem is referenced by:  isxmet2d  12517  xmetres2  12548  comet  12668  xmetxp  12676
  Copyright terms: Public domain W3C validator