ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetxp Unicode version

Theorem xmetxp 12676
Description: The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
Assertion
Ref Expression
xmetxp  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)

Proof of Theorem xmetxp
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.1 . . . 4  |-  ( ph  ->  M  e.  ( *Met `  X ) )
2 eqid 2139 . . . . 5  |-  ( MetOpen `  M )  =  (
MetOpen `  M )
32mopnm 12617 . . . 4  |-  ( M  e.  ( *Met `  X )  ->  X  e.  ( MetOpen `  M )
)
41, 3syl 14 . . 3  |-  ( ph  ->  X  e.  ( MetOpen `  M ) )
5 xmetxp.2 . . . 4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
6 eqid 2139 . . . . 5  |-  ( MetOpen `  N )  =  (
MetOpen `  N )
76mopnm 12617 . . . 4  |-  ( N  e.  ( *Met `  Y )  ->  Y  e.  ( MetOpen `  N )
)
85, 7syl 14 . . 3  |-  ( ph  ->  Y  e.  ( MetOpen `  N ) )
9 xpexg 4653 . . 3  |-  ( ( X  e.  ( MetOpen `  M )  /\  Y  e.  ( MetOpen `  N )
)  ->  ( X  X.  Y )  e.  _V )
104, 8, 9syl2anc 408 . 2  |-  ( ph  ->  ( X  X.  Y
)  e.  _V )
111adantr 274 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  ->  M  e.  ( *Met `  X ) )
12 xp1st 6063 . . . . . . 7  |-  ( r  e.  ( X  X.  Y )  ->  ( 1st `  r )  e.  X )
1312ad2antrl 481 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( 1st `  r
)  e.  X )
14 xp1st 6063 . . . . . . 7  |-  ( s  e.  ( X  X.  Y )  ->  ( 1st `  s )  e.  X )
1514ad2antll 482 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( 1st `  s
)  e.  X )
16 xmetcl 12521 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  r
)  e.  X  /\  ( 1st `  s )  e.  X )  -> 
( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR* )
1711, 13, 15, 16syl3anc 1216 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR* )
185adantr 274 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  ->  N  e.  ( *Met `  Y ) )
19 xp2nd 6064 . . . . . . 7  |-  ( r  e.  ( X  X.  Y )  ->  ( 2nd `  r )  e.  Y )
2019ad2antrl 481 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( 2nd `  r
)  e.  Y )
21 xp2nd 6064 . . . . . . 7  |-  ( s  e.  ( X  X.  Y )  ->  ( 2nd `  s )  e.  Y )
2221ad2antll 482 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( 2nd `  s
)  e.  Y )
23 xmetcl 12521 . . . . . 6  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  r
)  e.  Y  /\  ( 2nd `  s )  e.  Y )  -> 
( ( 2nd `  r
) N ( 2nd `  s ) )  e. 
RR* )
2418, 20, 22, 23syl3anc 1216 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  r
) N ( 2nd `  s ) )  e. 
RR* )
25 xrmaxcl 11021 . . . . 5  |-  ( ( ( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR*  /\  ( ( 2nd `  r ) N ( 2nd `  s
) )  e.  RR* )  ->  sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  e.  RR* )
2617, 24, 25syl2anc 408 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  ->  sup ( { ( ( 1st `  r ) M ( 1st `  s
) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  e.  RR* )
2726ralrimivva 2514 . . 3  |-  ( ph  ->  A. r  e.  ( X  X.  Y ) A. s  e.  ( X  X.  Y ) sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  e.  RR* )
28 xmetxp.p . . . . 5  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
29 fveq2 5421 . . . . . . . . 9  |-  ( u  =  r  ->  ( 1st `  u )  =  ( 1st `  r
) )
3029oveq1d 5789 . . . . . . . 8  |-  ( u  =  r  ->  (
( 1st `  u
) M ( 1st `  v ) )  =  ( ( 1st `  r
) M ( 1st `  v ) ) )
31 fveq2 5421 . . . . . . . . 9  |-  ( u  =  r  ->  ( 2nd `  u )  =  ( 2nd `  r
) )
3231oveq1d 5789 . . . . . . . 8  |-  ( u  =  r  ->  (
( 2nd `  u
) N ( 2nd `  v ) )  =  ( ( 2nd `  r
) N ( 2nd `  v ) ) )
3330, 32preq12d 3608 . . . . . . 7  |-  ( u  =  r  ->  { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) }  =  { ( ( 1st `  r ) M ( 1st `  v
) ) ,  ( ( 2nd `  r
) N ( 2nd `  v ) ) } )
3433supeq1d 6874 . . . . . 6  |-  ( u  =  r  ->  sup ( { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  r
) M ( 1st `  v ) ) ,  ( ( 2nd `  r
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
35 fveq2 5421 . . . . . . . . 9  |-  ( v  =  s  ->  ( 1st `  v )  =  ( 1st `  s
) )
3635oveq2d 5790 . . . . . . . 8  |-  ( v  =  s  ->  (
( 1st `  r
) M ( 1st `  v ) )  =  ( ( 1st `  r
) M ( 1st `  s ) ) )
37 fveq2 5421 . . . . . . . . 9  |-  ( v  =  s  ->  ( 2nd `  v )  =  ( 2nd `  s
) )
3837oveq2d 5790 . . . . . . . 8  |-  ( v  =  s  ->  (
( 2nd `  r
) N ( 2nd `  v ) )  =  ( ( 2nd `  r
) N ( 2nd `  s ) ) )
3936, 38preq12d 3608 . . . . . . 7  |-  ( v  =  s  ->  { ( ( 1st `  r
) M ( 1st `  v ) ) ,  ( ( 2nd `  r
) N ( 2nd `  v ) ) }  =  { ( ( 1st `  r ) M ( 1st `  s
) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } )
4039supeq1d 6874 . . . . . 6  |-  ( v  =  s  ->  sup ( { ( ( 1st `  r ) M ( 1st `  v ) ) ,  ( ( 2nd `  r ) N ( 2nd `  v
) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
4134, 40cbvmpov 5851 . . . . 5  |-  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) } ,  RR* ,  <  ) )  =  ( r  e.  ( X  X.  Y
) ,  s  e.  ( X  X.  Y
)  |->  sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
4228, 41eqtri 2160 . . . 4  |-  P  =  ( r  e.  ( X  X.  Y ) ,  s  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
4342fmpo 6099 . . 3  |-  ( A. r  e.  ( X  X.  Y ) A. s  e.  ( X  X.  Y
) sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  e.  RR*  <->  P : ( ( X  X.  Y )  X.  ( X  X.  Y ) ) --> RR* )
4427, 43sylib 121 . 2  |-  ( ph  ->  P : ( ( X  X.  Y )  X.  ( X  X.  Y ) ) --> RR* )
45 simprl 520 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
r  e.  ( X  X.  Y ) )
46 simprr 521 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
s  e.  ( X  X.  Y ) )
4734, 40, 28ovmpog 5905 . . . . . . . 8  |-  ( ( r  e.  ( X  X.  Y )  /\  s  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  r ) M ( 1st `  s ) ) ,  ( ( 2nd `  r ) N ( 2nd `  s
) ) } ,  RR* ,  <  )  e. 
RR* )  ->  (
r P s )  =  sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
4845, 46, 26, 47syl3anc 1216 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( r P s )  =  sup ( { ( ( 1st `  r ) M ( 1st `  s ) ) ,  ( ( 2nd `  r ) N ( 2nd `  s
) ) } ,  RR* ,  <  ) )
4948, 26eqeltrd 2216 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( r P s )  e.  RR* )
50 0xr 7812 . . . . . . 7  |-  0  e.  RR*
5150a1i 9 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
0  e.  RR* )
52 xrletri3 9588 . . . . . 6  |-  ( ( ( r P s )  e.  RR*  /\  0  e.  RR* )  ->  (
( r P s )  =  0  <->  (
( r P s )  <_  0  /\  0  <_  ( r P s ) ) ) )
5349, 51, 52syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( r P s )  =  0  <-> 
( ( r P s )  <_  0  /\  0  <_  ( r P s ) ) ) )
54 xmetge0 12534 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  r
)  e.  X  /\  ( 1st `  s )  e.  X )  -> 
0  <_  ( ( 1st `  r ) M ( 1st `  s
) ) )
5511, 13, 15, 54syl3anc 1216 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
0  <_  ( ( 1st `  r ) M ( 1st `  s
) ) )
56 xrmax1sup 11022 . . . . . . . . 9  |-  ( ( ( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR*  /\  ( ( 2nd `  r ) N ( 2nd `  s
) )  e.  RR* )  ->  ( ( 1st `  r ) M ( 1st `  s ) )  <_  sup ( { ( ( 1st `  r ) M ( 1st `  s ) ) ,  ( ( 2nd `  r ) N ( 2nd `  s
) ) } ,  RR* ,  <  ) )
5717, 24, 56syl2anc 408 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  r
) M ( 1st `  s ) )  <_  sup ( { ( ( 1st `  r ) M ( 1st `  s
) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
5851, 17, 26, 55, 57xrletrd 9595 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
0  <_  sup ( { ( ( 1st `  r ) M ( 1st `  s ) ) ,  ( ( 2nd `  r ) N ( 2nd `  s
) ) } ,  RR* ,  <  ) )
5958, 48breqtrrd 3956 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
0  <_  ( r P s ) )
6059biantrud 302 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( r P s )  <_  0  <->  ( ( r P s )  <_  0  /\  0  <_  ( r P s ) ) ) )
6153, 60bitr4d 190 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( r P s )  =  0  <-> 
( r P s )  <_  0 ) )
6248breq1d 3939 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( r P s )  <_  0  <->  sup ( { ( ( 1st `  r ) M ( 1st `  s
) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  <_  0 ) )
63 xrmaxlesup 11028 . . . . 5  |-  ( ( ( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR*  /\  ( ( 2nd `  r ) N ( 2nd `  s
) )  e.  RR*  /\  0  e.  RR* )  ->  ( sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  <_  0  <->  ( ( ( 1st `  r ) M ( 1st `  s
) )  <_  0  /\  ( ( 2nd `  r
) N ( 2nd `  s ) )  <_ 
0 ) ) )
6417, 24, 51, 63syl3anc 1216 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  <_  0  <->  ( ( ( 1st `  r ) M ( 1st `  s
) )  <_  0  /\  ( ( 2nd `  r
) N ( 2nd `  s ) )  <_ 
0 ) ) )
6561, 62, 643bitrd 213 . . 3  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( r P s )  =  0  <-> 
( ( ( 1st `  r ) M ( 1st `  s ) )  <_  0  /\  ( ( 2nd `  r
) N ( 2nd `  s ) )  <_ 
0 ) ) )
6655biantrud 302 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 1st `  r ) M ( 1st `  s ) )  <_  0  <->  ( (
( 1st `  r
) M ( 1st `  s ) )  <_ 
0  /\  0  <_  ( ( 1st `  r
) M ( 1st `  s ) ) ) ) )
67 xrletri3 9588 . . . . . 6  |-  ( ( ( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR*  /\  0  e.  RR* )  ->  ( (
( 1st `  r
) M ( 1st `  s ) )  =  0  <->  ( ( ( 1st `  r ) M ( 1st `  s
) )  <_  0  /\  0  <_  ( ( 1st `  r ) M ( 1st `  s
) ) ) ) )
6817, 51, 67syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 1st `  r ) M ( 1st `  s ) )  =  0  <->  (
( ( 1st `  r
) M ( 1st `  s ) )  <_ 
0  /\  0  <_  ( ( 1st `  r
) M ( 1st `  s ) ) ) ) )
6966, 68bitr4d 190 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 1st `  r ) M ( 1st `  s ) )  <_  0  <->  ( ( 1st `  r ) M ( 1st `  s
) )  =  0 ) )
70 xmetge0 12534 . . . . . . 7  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  r
)  e.  Y  /\  ( 2nd `  s )  e.  Y )  -> 
0  <_  ( ( 2nd `  r ) N ( 2nd `  s
) ) )
7118, 20, 22, 70syl3anc 1216 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
0  <_  ( ( 2nd `  r ) N ( 2nd `  s
) ) )
7271biantrud 302 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 2nd `  r ) N ( 2nd `  s ) )  <_  0  <->  ( (
( 2nd `  r
) N ( 2nd `  s ) )  <_ 
0  /\  0  <_  ( ( 2nd `  r
) N ( 2nd `  s ) ) ) ) )
73 xrletri3 9588 . . . . . 6  |-  ( ( ( ( 2nd `  r
) N ( 2nd `  s ) )  e. 
RR*  /\  0  e.  RR* )  ->  ( (
( 2nd `  r
) N ( 2nd `  s ) )  =  0  <->  ( ( ( 2nd `  r ) N ( 2nd `  s
) )  <_  0  /\  0  <_  ( ( 2nd `  r ) N ( 2nd `  s
) ) ) ) )
7424, 51, 73syl2anc 408 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 2nd `  r ) N ( 2nd `  s ) )  =  0  <->  (
( ( 2nd `  r
) N ( 2nd `  s ) )  <_ 
0  /\  0  <_  ( ( 2nd `  r
) N ( 2nd `  s ) ) ) ) )
7572, 74bitr4d 190 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 2nd `  r ) N ( 2nd `  s ) )  <_  0  <->  ( ( 2nd `  r ) N ( 2nd `  s
) )  =  0 ) )
7669, 75anbi12d 464 . . 3  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( ( 1st `  r ) M ( 1st `  s
) )  <_  0  /\  ( ( 2nd `  r
) N ( 2nd `  s ) )  <_ 
0 )  <->  ( (
( 1st `  r
) M ( 1st `  s ) )  =  0  /\  ( ( 2nd `  r ) N ( 2nd `  s
) )  =  0 ) ) )
77 xmeteq0 12528 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  r
)  e.  X  /\  ( 1st `  s )  e.  X )  -> 
( ( ( 1st `  r ) M ( 1st `  s ) )  =  0  <->  ( 1st `  r )  =  ( 1st `  s
) ) )
7811, 13, 15, 77syl3anc 1216 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 1st `  r ) M ( 1st `  s ) )  =  0  <->  ( 1st `  r )  =  ( 1st `  s
) ) )
79 xmeteq0 12528 . . . . . 6  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  r
)  e.  Y  /\  ( 2nd `  s )  e.  Y )  -> 
( ( ( 2nd `  r ) N ( 2nd `  s ) )  =  0  <->  ( 2nd `  r )  =  ( 2nd `  s
) ) )
8018, 20, 22, 79syl3anc 1216 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 2nd `  r ) N ( 2nd `  s ) )  =  0  <->  ( 2nd `  r )  =  ( 2nd `  s
) ) )
8178, 80anbi12d 464 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( ( 1st `  r ) M ( 1st `  s
) )  =  0  /\  ( ( 2nd `  r ) N ( 2nd `  s ) )  =  0 )  <-> 
( ( 1st `  r
)  =  ( 1st `  s )  /\  ( 2nd `  r )  =  ( 2nd `  s
) ) ) )
82 xpopth 6074 . . . . 5  |-  ( ( r  e.  ( X  X.  Y )  /\  s  e.  ( X  X.  Y ) )  -> 
( ( ( 1st `  r )  =  ( 1st `  s )  /\  ( 2nd `  r
)  =  ( 2nd `  s ) )  <->  r  =  s ) )
8382adantl 275 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( 1st `  r )  =  ( 1st `  s )  /\  ( 2nd `  r
)  =  ( 2nd `  s ) )  <->  r  =  s ) )
8481, 83bitrd 187 . . 3  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( ( ( 1st `  r ) M ( 1st `  s
) )  =  0  /\  ( ( 2nd `  r ) N ( 2nd `  s ) )  =  0 )  <-> 
r  =  s ) )
8565, 76, 843bitrd 213 . 2  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
) ) )  -> 
( ( r P s )  =  0  <-> 
r  =  s ) )
86483adantr3 1142 . . 3  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( r P s )  =  sup ( { ( ( 1st `  r ) M ( 1st `  s ) ) ,  ( ( 2nd `  r ) N ( 2nd `  s
) ) } ,  RR* ,  <  ) )
87173adantr3 1142 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR* )
881adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  ->  M  e.  ( *Met `  X ) )
89 simpr3 989 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
t  e.  ( X  X.  Y ) )
90 xp1st 6063 . . . . . . . 8  |-  ( t  e.  ( X  X.  Y )  ->  ( 1st `  t )  e.  X )
9189, 90syl 14 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( 1st `  t
)  e.  X )
92 simpr1 987 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
r  e.  ( X  X.  Y ) )
9392, 12syl 14 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( 1st `  r
)  e.  X )
94 xmetcl 12521 . . . . . . 7  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  t
)  e.  X  /\  ( 1st `  r )  e.  X )  -> 
( ( 1st `  t
) M ( 1st `  r ) )  e. 
RR* )
9588, 91, 93, 94syl3anc 1216 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  t
) M ( 1st `  r ) )  e. 
RR* )
96153adantr3 1142 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( 1st `  s
)  e.  X )
97 xmetcl 12521 . . . . . . 7  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  t
)  e.  X  /\  ( 1st `  s )  e.  X )  -> 
( ( 1st `  t
) M ( 1st `  s ) )  e. 
RR* )
9888, 91, 96, 97syl3anc 1216 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  t
) M ( 1st `  s ) )  e. 
RR* )
9995, 98xaddcld 9667 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( ( 1st `  t ) M ( 1st `  r ) ) +e ( ( 1st `  t
) M ( 1st `  s ) ) )  e.  RR* )
1005adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  ->  N  e.  ( *Met `  Y ) )
101 xp2nd 6064 . . . . . . . . . . 11  |-  ( t  e.  ( X  X.  Y )  ->  ( 2nd `  t )  e.  Y )
10289, 101syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( 2nd `  t
)  e.  Y )
10392, 19syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( 2nd `  r
)  e.  Y )
104 xmetcl 12521 . . . . . . . . . 10  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  t
)  e.  Y  /\  ( 2nd `  r )  e.  Y )  -> 
( ( 2nd `  t
) N ( 2nd `  r ) )  e. 
RR* )
105100, 102, 103, 104syl3anc 1216 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  t
) N ( 2nd `  r ) )  e. 
RR* )
106 xrmaxcl 11021 . . . . . . . . 9  |-  ( ( ( ( 1st `  t
) M ( 1st `  r ) )  e. 
RR*  /\  ( ( 2nd `  t ) N ( 2nd `  r
) )  e.  RR* )  ->  sup ( { ( ( 1st `  t
) M ( 1st `  r ) ) ,  ( ( 2nd `  t
) N ( 2nd `  r ) ) } ,  RR* ,  <  )  e.  RR* )
10795, 105, 106syl2anc 408 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  ->  sup ( { ( ( 1st `  t ) M ( 1st `  r
) ) ,  ( ( 2nd `  t
) N ( 2nd `  r ) ) } ,  RR* ,  <  )  e.  RR* )
108 fveq2 5421 . . . . . . . . . . . 12  |-  ( u  =  t  ->  ( 1st `  u )  =  ( 1st `  t
) )
109 fveq2 5421 . . . . . . . . . . . 12  |-  ( v  =  r  ->  ( 1st `  v )  =  ( 1st `  r
) )
110108, 109oveqan12d 5793 . . . . . . . . . . 11  |-  ( ( u  =  t  /\  v  =  r )  ->  ( ( 1st `  u
) M ( 1st `  v ) )  =  ( ( 1st `  t
) M ( 1st `  r ) ) )
111 fveq2 5421 . . . . . . . . . . . 12  |-  ( u  =  t  ->  ( 2nd `  u )  =  ( 2nd `  t
) )
112 fveq2 5421 . . . . . . . . . . . 12  |-  ( v  =  r  ->  ( 2nd `  v )  =  ( 2nd `  r
) )
113111, 112oveqan12d 5793 . . . . . . . . . . 11  |-  ( ( u  =  t  /\  v  =  r )  ->  ( ( 2nd `  u
) N ( 2nd `  v ) )  =  ( ( 2nd `  t
) N ( 2nd `  r ) ) )
114110, 113preq12d 3608 . . . . . . . . . 10  |-  ( ( u  =  t  /\  v  =  r )  ->  { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) }  =  { ( ( 1st `  t ) M ( 1st `  r ) ) ,  ( ( 2nd `  t ) N ( 2nd `  r
) ) } )
115114supeq1d 6874 . . . . . . . . 9  |-  ( ( u  =  t  /\  v  =  r )  ->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  t
) M ( 1st `  r ) ) ,  ( ( 2nd `  t
) N ( 2nd `  r ) ) } ,  RR* ,  <  )
)
116115, 28ovmpoga 5900 . . . . . . . 8  |-  ( ( t  e.  ( X  X.  Y )  /\  r  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  t ) M ( 1st `  r ) ) ,  ( ( 2nd `  t ) N ( 2nd `  r
) ) } ,  RR* ,  <  )  e. 
RR* )  ->  (
t P r )  =  sup ( { ( ( 1st `  t
) M ( 1st `  r ) ) ,  ( ( 2nd `  t
) N ( 2nd `  r ) ) } ,  RR* ,  <  )
)
11789, 92, 107, 116syl3anc 1216 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( t P r )  =  sup ( { ( ( 1st `  t ) M ( 1st `  r ) ) ,  ( ( 2nd `  t ) N ( 2nd `  r
) ) } ,  RR* ,  <  ) )
118117, 107eqeltrd 2216 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( t P r )  e.  RR* )
119 simpr2 988 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
s  e.  ( X  X.  Y ) )
120223adantr3 1142 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( 2nd `  s
)  e.  Y )
121 xmetcl 12521 . . . . . . . . . 10  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  t
)  e.  Y  /\  ( 2nd `  s )  e.  Y )  -> 
( ( 2nd `  t
) N ( 2nd `  s ) )  e. 
RR* )
122100, 102, 120, 121syl3anc 1216 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  t
) N ( 2nd `  s ) )  e. 
RR* )
123 xrmaxcl 11021 . . . . . . . . 9  |-  ( ( ( ( 1st `  t
) M ( 1st `  s ) )  e. 
RR*  /\  ( ( 2nd `  t ) N ( 2nd `  s
) )  e.  RR* )  ->  sup ( { ( ( 1st `  t
) M ( 1st `  s ) ) ,  ( ( 2nd `  t
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  e.  RR* )
12498, 122, 123syl2anc 408 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  ->  sup ( { ( ( 1st `  t ) M ( 1st `  s
) ) ,  ( ( 2nd `  t
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  e.  RR* )
125108, 35oveqan12d 5793 . . . . . . . . . . 11  |-  ( ( u  =  t  /\  v  =  s )  ->  ( ( 1st `  u
) M ( 1st `  v ) )  =  ( ( 1st `  t
) M ( 1st `  s ) ) )
126111, 37oveqan12d 5793 . . . . . . . . . . 11  |-  ( ( u  =  t  /\  v  =  s )  ->  ( ( 2nd `  u
) N ( 2nd `  v ) )  =  ( ( 2nd `  t
) N ( 2nd `  s ) ) )
127125, 126preq12d 3608 . . . . . . . . . 10  |-  ( ( u  =  t  /\  v  =  s )  ->  { ( ( 1st `  u ) M ( 1st `  v ) ) ,  ( ( 2nd `  u ) N ( 2nd `  v
) ) }  =  { ( ( 1st `  t ) M ( 1st `  s ) ) ,  ( ( 2nd `  t ) N ( 2nd `  s
) ) } )
128127supeq1d 6874 . . . . . . . . 9  |-  ( ( u  =  t  /\  v  =  s )  ->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )  =  sup ( { ( ( 1st `  t
) M ( 1st `  s ) ) ,  ( ( 2nd `  t
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
129128, 28ovmpoga 5900 . . . . . . . 8  |-  ( ( t  e.  ( X  X.  Y )  /\  s  e.  ( X  X.  Y )  /\  sup ( { ( ( 1st `  t ) M ( 1st `  s ) ) ,  ( ( 2nd `  t ) N ( 2nd `  s
) ) } ,  RR* ,  <  )  e. 
RR* )  ->  (
t P s )  =  sup ( { ( ( 1st `  t
) M ( 1st `  s ) ) ,  ( ( 2nd `  t
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
13089, 119, 124, 129syl3anc 1216 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( t P s )  =  sup ( { ( ( 1st `  t ) M ( 1st `  s ) ) ,  ( ( 2nd `  t ) N ( 2nd `  s
) ) } ,  RR* ,  <  ) )
131130, 124eqeltrd 2216 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( t P s )  e.  RR* )
132118, 131xaddcld 9667 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( t P r ) +e
( t P s ) )  e.  RR* )
133 xmettri2 12530 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  ( ( 1st `  t )  e.  X  /\  ( 1st `  r
)  e.  X  /\  ( 1st `  s )  e.  X ) )  ->  ( ( 1st `  r ) M ( 1st `  s ) )  <_  ( (
( 1st `  t
) M ( 1st `  r ) ) +e ( ( 1st `  t ) M ( 1st `  s ) ) ) )
13488, 91, 93, 96, 133syl13anc 1218 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  r
) M ( 1st `  s ) )  <_ 
( ( ( 1st `  t ) M ( 1st `  r ) ) +e ( ( 1st `  t
) M ( 1st `  s ) ) ) )
135 xrmax1sup 11022 . . . . . . . 8  |-  ( ( ( ( 1st `  t
) M ( 1st `  r ) )  e. 
RR*  /\  ( ( 2nd `  t ) N ( 2nd `  r
) )  e.  RR* )  ->  ( ( 1st `  t ) M ( 1st `  r ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  r ) ) ,  ( ( 2nd `  t ) N ( 2nd `  r
) ) } ,  RR* ,  <  ) )
13695, 105, 135syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  t
) M ( 1st `  r ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  r
) ) ,  ( ( 2nd `  t
) N ( 2nd `  r ) ) } ,  RR* ,  <  )
)
137136, 117breqtrrd 3956 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  t
) M ( 1st `  r ) )  <_ 
( t P r ) )
138 xrmax1sup 11022 . . . . . . . 8  |-  ( ( ( ( 1st `  t
) M ( 1st `  s ) )  e. 
RR*  /\  ( ( 2nd `  t ) N ( 2nd `  s
) )  e.  RR* )  ->  ( ( 1st `  t ) M ( 1st `  s ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  s ) ) ,  ( ( 2nd `  t ) N ( 2nd `  s
) ) } ,  RR* ,  <  ) )
13998, 122, 138syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  t
) M ( 1st `  s ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  s
) ) ,  ( ( 2nd `  t
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
140139, 130breqtrrd 3956 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  t
) M ( 1st `  s ) )  <_ 
( t P s ) )
141 xle2add 9662 . . . . . . 7  |-  ( ( ( ( ( 1st `  t ) M ( 1st `  r ) )  e.  RR*  /\  (
( 1st `  t
) M ( 1st `  s ) )  e. 
RR* )  /\  (
( t P r )  e.  RR*  /\  (
t P s )  e.  RR* ) )  -> 
( ( ( ( 1st `  t ) M ( 1st `  r
) )  <_  (
t P r )  /\  ( ( 1st `  t ) M ( 1st `  s ) )  <_  ( t P s ) )  ->  ( ( ( 1st `  t ) M ( 1st `  r
) ) +e
( ( 1st `  t
) M ( 1st `  s ) ) )  <_  ( ( t P r ) +e ( t P s ) ) ) )
14295, 98, 118, 131, 141syl22anc 1217 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( ( ( 1st `  t ) M ( 1st `  r
) )  <_  (
t P r )  /\  ( ( 1st `  t ) M ( 1st `  s ) )  <_  ( t P s ) )  ->  ( ( ( 1st `  t ) M ( 1st `  r
) ) +e
( ( 1st `  t
) M ( 1st `  s ) ) )  <_  ( ( t P r ) +e ( t P s ) ) ) )
143137, 140, 142mp2and 429 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( ( 1st `  t ) M ( 1st `  r ) ) +e ( ( 1st `  t
) M ( 1st `  s ) ) )  <_  ( ( t P r ) +e ( t P s ) ) )
14487, 99, 132, 134, 143xrletrd 9595 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 1st `  r
) M ( 1st `  s ) )  <_ 
( ( t P r ) +e
( t P s ) ) )
145243adantr3 1142 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  r
) N ( 2nd `  s ) )  e. 
RR* )
146105, 122xaddcld 9667 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( ( 2nd `  t ) N ( 2nd `  r ) ) +e ( ( 2nd `  t
) N ( 2nd `  s ) ) )  e.  RR* )
147 xmettri2 12530 . . . . . 6  |-  ( ( N  e.  ( *Met `  Y )  /\  ( ( 2nd `  t )  e.  Y  /\  ( 2nd `  r
)  e.  Y  /\  ( 2nd `  s )  e.  Y ) )  ->  ( ( 2nd `  r ) N ( 2nd `  s ) )  <_  ( (
( 2nd `  t
) N ( 2nd `  r ) ) +e ( ( 2nd `  t ) N ( 2nd `  s ) ) ) )
148100, 102, 103, 120, 147syl13anc 1218 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  r
) N ( 2nd `  s ) )  <_ 
( ( ( 2nd `  t ) N ( 2nd `  r ) ) +e ( ( 2nd `  t
) N ( 2nd `  s ) ) ) )
149 xrmax2sup 11023 . . . . . . . 8  |-  ( ( ( ( 1st `  t
) M ( 1st `  r ) )  e. 
RR*  /\  ( ( 2nd `  t ) N ( 2nd `  r
) )  e.  RR* )  ->  ( ( 2nd `  t ) N ( 2nd `  r ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  r ) ) ,  ( ( 2nd `  t ) N ( 2nd `  r
) ) } ,  RR* ,  <  ) )
15095, 105, 149syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  t
) N ( 2nd `  r ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  r
) ) ,  ( ( 2nd `  t
) N ( 2nd `  r ) ) } ,  RR* ,  <  )
)
151150, 117breqtrrd 3956 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  t
) N ( 2nd `  r ) )  <_ 
( t P r ) )
152 xrmax2sup 11023 . . . . . . . 8  |-  ( ( ( ( 1st `  t
) M ( 1st `  s ) )  e. 
RR*  /\  ( ( 2nd `  t ) N ( 2nd `  s
) )  e.  RR* )  ->  ( ( 2nd `  t ) N ( 2nd `  s ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  s ) ) ,  ( ( 2nd `  t ) N ( 2nd `  s
) ) } ,  RR* ,  <  ) )
15398, 122, 152syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  t
) N ( 2nd `  s ) )  <_  sup ( { ( ( 1st `  t ) M ( 1st `  s
) ) ,  ( ( 2nd `  t
) N ( 2nd `  s ) ) } ,  RR* ,  <  )
)
154153, 130breqtrrd 3956 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  t
) N ( 2nd `  s ) )  <_ 
( t P s ) )
155 xle2add 9662 . . . . . . 7  |-  ( ( ( ( ( 2nd `  t ) N ( 2nd `  r ) )  e.  RR*  /\  (
( 2nd `  t
) N ( 2nd `  s ) )  e. 
RR* )  /\  (
( t P r )  e.  RR*  /\  (
t P s )  e.  RR* ) )  -> 
( ( ( ( 2nd `  t ) N ( 2nd `  r
) )  <_  (
t P r )  /\  ( ( 2nd `  t ) N ( 2nd `  s ) )  <_  ( t P s ) )  ->  ( ( ( 2nd `  t ) N ( 2nd `  r
) ) +e
( ( 2nd `  t
) N ( 2nd `  s ) ) )  <_  ( ( t P r ) +e ( t P s ) ) ) )
156105, 122, 118, 131, 155syl22anc 1217 . . . . . 6  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( ( ( 2nd `  t ) N ( 2nd `  r
) )  <_  (
t P r )  /\  ( ( 2nd `  t ) N ( 2nd `  s ) )  <_  ( t P s ) )  ->  ( ( ( 2nd `  t ) N ( 2nd `  r
) ) +e
( ( 2nd `  t
) N ( 2nd `  s ) ) )  <_  ( ( t P r ) +e ( t P s ) ) ) )
157151, 154, 156mp2and 429 . . . . 5  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( ( 2nd `  t ) N ( 2nd `  r ) ) +e ( ( 2nd `  t
) N ( 2nd `  s ) ) )  <_  ( ( t P r ) +e ( t P s ) ) )
158145, 146, 132, 148, 157xrletrd 9595 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( ( 2nd `  r
) N ( 2nd `  s ) )  <_ 
( ( t P r ) +e
( t P s ) ) )
159 xrmaxlesup 11028 . . . . 5  |-  ( ( ( ( 1st `  r
) M ( 1st `  s ) )  e. 
RR*  /\  ( ( 2nd `  r ) N ( 2nd `  s
) )  e.  RR*  /\  ( ( t P r ) +e
( t P s ) )  e.  RR* )  ->  ( sup ( { ( ( 1st `  r ) M ( 1st `  s ) ) ,  ( ( 2nd `  r ) N ( 2nd `  s
) ) } ,  RR* ,  <  )  <_ 
( ( t P r ) +e
( t P s ) )  <->  ( (
( 1st `  r
) M ( 1st `  s ) )  <_ 
( ( t P r ) +e
( t P s ) )  /\  (
( 2nd `  r
) N ( 2nd `  s ) )  <_ 
( ( t P r ) +e
( t P s ) ) ) ) )
16087, 145, 132, 159syl3anc 1216 . . . 4  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( sup ( { ( ( 1st `  r
) M ( 1st `  s ) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  <_  ( ( t P r ) +e
( t P s ) )  <->  ( (
( 1st `  r
) M ( 1st `  s ) )  <_ 
( ( t P r ) +e
( t P s ) )  /\  (
( 2nd `  r
) N ( 2nd `  s ) )  <_ 
( ( t P r ) +e
( t P s ) ) ) ) )
161144, 158, 160mpbir2and 928 . . 3  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  ->  sup ( { ( ( 1st `  r ) M ( 1st `  s
) ) ,  ( ( 2nd `  r
) N ( 2nd `  s ) ) } ,  RR* ,  <  )  <_  ( ( t P r ) +e
( t P s ) ) )
16286, 161eqbrtrd 3950 . 2  |-  ( (
ph  /\  ( r  e.  ( X  X.  Y
)  /\  s  e.  ( X  X.  Y
)  /\  t  e.  ( X  X.  Y
) ) )  -> 
( r P s )  <_  ( (
t P r ) +e ( t P s ) ) )
16310, 44, 85, 162isxmetd 12516 1  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686   {cpr 3528   class class class wbr 3929    X. cxp 4537   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   1stc1st 6036   2ndc2nd 6037   supcsup 6869   0cc0 7620   RR*cxr 7799    < clt 7800    <_ cle 7801   +ecxad 9557   *Metcxmet 12149   MetOpencmopn 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210
This theorem is referenced by:  xmetxpbl  12677  xmettxlem  12678  xmettx  12679  txmetcnp  12687
  Copyright terms: Public domain W3C validator