ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsseleq Unicode version

Theorem nnsseleq 6138
Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
Assertion
Ref Expression
nnsseleq  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )

Proof of Theorem nnsseleq
StepHypRef Expression
1 nntri1 6133 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
2 nntri3or 6130 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
3 df-3or 921 . . . . . 6  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( ( A  e.  B  \/  A  =  B
)  \/  B  e.  A ) )
42, 3sylib 120 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  \/  A  =  B )  \/  B  e.  A ) )
54orcomd 681 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  \/  ( A  e.  B  \/  A  =  B
) ) )
65ord 676 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  B  e.  A  ->  ( A  e.  B  \/  A  =  B ) ) )
71, 6sylbid 148 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  ( A  e.  B  \/  A  =  B
) ) )
8 nnord 4354 . . . . 5  |-  ( B  e.  om  ->  Ord  B )
98adantl 271 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  Ord  B )
10 ordelss 4136 . . . . 5  |-  ( ( Ord  B  /\  A  e.  B )  ->  A  C_  B )
1110ex 113 . . . 4  |-  ( Ord 
B  ->  ( A  e.  B  ->  A  C_  B ) )
129, 11syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
13 eqimss 3052 . . . 4  |-  ( A  =  B  ->  A  C_  B )
1413a1i 9 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  ->  A  C_  B
) )
1512, 14jaod 670 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  \/  A  =  B )  ->  A  C_  B ) )
167, 15impbid 127 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    \/ w3o 919    = wceq 1285    e. wcel 1434    C_ wss 2974   Ord word 4119   omcom 4333
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-uni 3604  df-int 3639  df-tr 3878  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334
This theorem is referenced by:  frec2uzled  9500
  Copyright terms: Public domain W3C validator