ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addvalex Unicode version

Theorem addvalex 7126
Description: Existence of a sum. This is dependent on how we define  + so once we proceed to real number axioms we will replace it with theorems such as addcl 7212. (Contributed by Jim Kingdon, 14-Jul-2021.)
Assertion
Ref Expression
addvalex  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B
)  e.  _V )

Proof of Theorem addvalex
Dummy variables  u  f  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5566 . 2  |-  ( A  +  B )  =  (  +  `  <. A ,  B >. )
2 df-nr 7018 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3 npex 6777 . . . . . . 7  |-  P.  e.  _V
43, 3xpex 4501 . . . . . 6  |-  ( P. 
X.  P. )  e.  _V
54qsex 6250 . . . . 5  |-  ( ( P.  X.  P. ) /.  ~R  )  e.  _V
62, 5eqeltri 2155 . . . 4  |-  R.  e.  _V
7 df-add 7106 . . . . 5  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
8 df-c 7101 . . . . . . . . 9  |-  CC  =  ( R.  X.  R. )
98eleq2i 2149 . . . . . . . 8  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
108eleq2i 2149 . . . . . . . 8  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
119, 10anbi12i 448 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
1211anbi1i 446 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
1312oprabbii 5611 . . . . 5  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
147, 13eqtri 2103 . . . 4  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
156, 14oprabex3 5807 . . 3  |-  +  e.  _V
16 opexg 4011 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
17 fvexg 5245 . . 3  |-  ( (  +  e.  _V  /\  <. A ,  B >.  e. 
_V )  ->  (  +  `  <. A ,  B >. )  e.  _V )
1815, 16, 17sylancr 405 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (  +  `  <. A ,  B >. )  e.  _V )
191, 18syl5eqel 2169 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285   E.wex 1422    e. wcel 1434   _Vcvv 2610   <.cop 3419    X. cxp 4389   ` cfv 4952  (class class class)co 5563   {coprab 5564   /.cqs 6192   P.cnp 6595    ~R cer 6600   R.cnr 6601    +R cplr 6605   CCcc 7093    + caddc 7098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-qs 6199  df-ni 6608  df-nqqs 6652  df-inp 6770  df-nr 7018  df-c 7101  df-add 7106
This theorem is referenced by:  peano2nnnn  7135
  Copyright terms: Public domain W3C validator