Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm Unicode version

Theorem releldm 4597
 Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
releldm

Proof of Theorem releldm
StepHypRef Expression
1 brrelex 4408 . 2
2 brrelex2 4409 . 2
3 simpr 108 . 2
4 breldmg 4569 . 2
51, 2, 3, 4syl3anc 1170 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wcel 1434  cvv 2602   class class class wbr 3793   cdm 4371   wrel 4376 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-rel 4378  df-dm 4381 This theorem is referenced by:  releldmb  4599  releldmi  4601  funeu  4956  fnbr  5032  relelfvdm  5237  funbrfv2b  5250  funfvbrb  5312  ercl  6183
 Copyright terms: Public domain W3C validator