ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidlemap Unicode version

Theorem dvidlemap 12829
Description: Lemma for dvid 12831 and dvconst 12830. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Hypotheses
Ref Expression
dvidlem.1  |-  ( ph  ->  F : CC --> CC )
dvidlemap.2  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
dvidlem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidlemap  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Distinct variable groups:    x, z, B   
x, F, z    ph, x, z

Proof of Theorem dvidlemap
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidlem.1 . . . . . 6  |-  ( ph  ->  F : CC --> CC )
2 cnex 7744 . . . . . . 7  |-  CC  e.  _V
32, 2fpm 6575 . . . . . 6  |-  ( F : CC --> CC  ->  F  e.  ( CC  ^pm  CC ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  CC ) )
5 dvfcnpm 12828 . . . . 5  |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC )
64, 5syl 14 . . . 4  |-  ( ph  ->  ( CC  _D  F
) : dom  ( CC  _D  F ) --> CC )
7 ssidd 3118 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
87, 1, 7dvbss 12823 . . . . . 6  |-  ( ph  ->  dom  ( CC  _D  F )  C_  CC )
9 reldvg 12817 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  F  e.  ( CC  ^pm  CC ) )  ->  Rel  ( CC  _D  F
) )
107, 4, 9syl2anc 408 . . . . . . . 8  |-  ( ph  ->  Rel  ( CC  _D  F ) )
1110adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  Rel  ( CC  _D  F ) )
12 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
13 eqid 2139 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
1413cntoptop 12702 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
1513cntoptopon 12701 . . . . . . . . . . . 12  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
1615toponunii 12184 . . . . . . . . . . 11  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
1716ntrtop 12297 . . . . . . . . . 10  |-  ( (
MetOpen `  ( abs  o.  -  ) )  e. 
Top  ->  ( ( int `  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 CC )  =  CC )
1814, 17ax-mp 5 . . . . . . . . 9  |-  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  CC )  =  CC
1912, 18eleqtrrdi 2233 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC ) )
20 limcresi 12804 . . . . . . . . . 10  |-  ( ( z  e.  CC  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } ) lim CC  x )
21 dvidlem.3 . . . . . . . . . . . 12  |-  B  e.  CC
22 ssidd 3118 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  CC  C_  CC )
23 cncfmptc 12751 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  CC  |->  B )  e.  ( CC
-cn-> CC ) )
2421, 22, 22, 23mp3an2i 1320 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  CC  |->  B )  e.  ( CC -cn-> CC ) )
25 eqidd 2140 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
2624, 12, 25cnmptlimc 12812 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e.  CC  |->  B ) lim CC  x ) )
2720, 26sseldi 3095 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
28 breq1 3932 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
2928elrab 2840 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  CC  |  w #  x } 
<->  ( z  e.  CC  /\  z #  x ) )
30 dvidlemap.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
31303exp2 1203 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  CC  ->  ( z  e.  CC  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
3231imp43 352 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  CC )  /\  (
z  e.  CC  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
3329, 32sylan2b 285 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  z  e.  { w  e.  CC  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
3433mpteq2dva 4018 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  B ) )
35 ssrab2 3182 . . . . . . . . . . . 12  |-  { w  e.  CC  |  w #  x }  C_  CC
36 resmpt 4867 . . . . . . . . . . . 12  |-  ( { w  e.  CC  |  w #  x }  C_  CC  ->  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
)  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B ) )
3735, 36ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x } )  =  ( z  e.  { w  e.  CC  |  w #  x }  |->  B )
3834, 37syl6eqr 2190 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) )
3938oveq1d 5789 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( ( z  e.  CC  |->  B )  |`  { w  e.  CC  |  w #  x }
) lim CC  x )
)
4027, 39eleqtrrd 2219 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e. 
{ w  e.  CC  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
4115toponrestid 12188 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
42 eqid 2139 . . . . . . . . 9  |-  ( z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  CC  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
431adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  F : CC
--> CC )
4441, 13, 42, 22, 43, 22eldvap 12820 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( x ( CC  _D  F
) B  <->  ( x  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC )  /\  B  e.  ( (
z  e.  { w  e.  CC  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x ) ) ) )
4519, 40, 44mpbir2and 928 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  x ( CC  _D  F ) B )
46 releldm 4774 . . . . . . 7  |-  ( ( Rel  ( CC  _D  F )  /\  x
( CC  _D  F
) B )  ->  x  e.  dom  ( CC 
_D  F ) )
4711, 45, 46syl2anc 408 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  x  e. 
dom  ( CC  _D  F ) )
488, 47eqelssd 3116 . . . . 5  |-  ( ph  ->  dom  ( CC  _D  F )  =  CC )
4948feq2d 5260 . . . 4  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : CC --> CC ) )
506, 49mpbid 146 . . 3  |-  ( ph  ->  ( CC  _D  F
) : CC --> CC )
5150ffnd 5273 . 2  |-  ( ph  ->  ( CC  _D  F
)  Fn  CC )
52 fnconstg 5320 . . 3  |-  ( B  e.  CC  ->  ( CC  X.  { B }
)  Fn  CC )
5321, 52mp1i 10 . 2  |-  ( ph  ->  ( CC  X.  { B } )  Fn  CC )
546adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC )
5554ffund 5276 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  Fun  ( CC  _D  F ) )
56 funbrfvb 5464 . . . . 5  |-  ( ( Fun  ( CC  _D  F )  /\  x  e.  dom  ( CC  _D  F ) )  -> 
( ( ( CC 
_D  F ) `  x )  =  B  <-> 
x ( CC  _D  F ) B ) )
5755, 47, 56syl2anc 408 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( ( CC  _D  F
) `  x )  =  B  <->  x ( CC 
_D  F ) B ) )
5845, 57mpbird 166 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  B )
5921a1i 9 . . . 4  |-  ( ph  ->  B  e.  CC )
60 fvconst2g 5634 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x )  =  B )
6159, 60sylan 281 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x
)  =  B )
6258, 61eqtr4d 2175 . 2  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  ( ( CC  X.  { B } ) `  x ) )
6351, 53, 62eqfnfvd 5521 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   {crab 2420    C_ wss 3071   {csn 3527   class class class wbr 3929    |-> cmpt 3989    X. cxp 4537   dom cdm 4539    |` cres 4541    o. ccom 4543   Rel wrel 4544   Fun wfun 5117    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^pm cpm 6543   CCcc 7618    - cmin 7933   # cap 8343    / cdiv 8432   abscabs 10769   MetOpencmopn 12154   Topctop 12164   intcnt 12262   -cn->ccncf 12726   lim CC climc 12792    _D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvconst  12830  dvid  12831
  Copyright terms: Public domain W3C validator