ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmulxxbr Unicode version

Theorem dvmulxxbr 12835
Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 12837. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvaddxx.g  |-  ( ph  ->  G : X --> CC )
dvaddbr.s  |-  ( ph  ->  S  C_  CC )
dvadd.bf  |-  ( ph  ->  C ( S  _D  F ) K )
dvadd.bg  |-  ( ph  ->  C ( S  _D  G ) L )
dvaddcntop.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvmulxxbr  |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) ) )

Proof of Theorem dvmulxxbr
Dummy variables  y  z  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . 4  |-  ( ph  ->  C ( S  _D  F ) K )
2 eqid 2139 . . . . 5  |-  ( Jt  S )  =  ( Jt  S )
3 dvaddcntop.j . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
4 eqid 2139 . . . . 5  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) )
5 dvaddbr.s . . . . 5  |-  ( ph  ->  S  C_  CC )
6 dvadd.f . . . . 5  |-  ( ph  ->  F : X --> CC )
7 dvadd.x . . . . 5  |-  ( ph  ->  X  C_  S )
82, 3, 4, 5, 6, 7eldvap 12820 . . . 4  |-  ( ph  ->  ( C ( S  _D  F ) K  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
91, 8mpbid 146 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
109simpld 111 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
117, 5sstrd 3107 . . . . . 6  |-  ( ph  ->  X  C_  CC )
123cntoptopon 12701 . . . . . . . . . 10  |-  J  e.  (TopOn `  CC )
13 resttopon 12340 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
1412, 5, 13sylancr 410 . . . . . . . . 9  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
15 topontop 12181 . . . . . . . . 9  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  ( Jt  S )  e.  Top )
1614, 15syl 14 . . . . . . . 8  |-  ( ph  ->  ( Jt  S )  e.  Top )
17 toponuni 12182 . . . . . . . . . 10  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Jt  S ) )
1814, 17syl 14 . . . . . . . . 9  |-  ( ph  ->  S  =  U. ( Jt  S ) )
197, 18sseqtrd 3135 . . . . . . . 8  |-  ( ph  ->  X  C_  U. ( Jt  S ) )
20 eqid 2139 . . . . . . . . 9  |-  U. ( Jt  S )  =  U. ( Jt  S )
2120ntrss2 12290 . . . . . . . 8  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S ) )  -> 
( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2216, 19, 21syl2anc 408 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  X )  C_  X
)
2322, 10sseldd 3098 . . . . . 6  |-  ( ph  ->  C  e.  X )
246, 11, 23dvlemap 12818 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
25 dvaddxx.g . . . . . . 7  |-  ( ph  ->  G : X --> CC )
2625adantr 274 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G : X --> CC )
27 elrabi 2837 . . . . . . 7  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z  e.  X
)
2827adantl 275 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  X )
2926, 28ffvelrnd 5556 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  z
)  e.  CC )
3024, 29mulcld 7786 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) )  x.  ( G `  z )
)  e.  CC )
3125, 11, 23dvlemap 12818 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
326, 23ffvelrnd 5556 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  CC )
3332adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  C
)  e.  CC )
3431, 33mulcld 7786 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
)  e.  CC )
35 ssidd 3118 . . . 4  |-  ( ph  ->  CC  C_  CC )
36 txtopon 12431 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
3712, 12, 36mp2an 422 . . . . 5  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
3837toponrestid 12188 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
399simprd 113 . . . . 5  |-  ( ph  ->  K  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
40 cnex 7744 . . . . . . . . . . . . 13  |-  CC  e.  _V
4140a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  CC  e.  _V )
4241, 5ssexd 4068 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  _V )
43 elpm2r 6560 . . . . . . . . . . . 12  |-  ( ( ( CC  e.  _V  /\  S  e.  _V )  /\  ( G : X --> CC  /\  X  C_  S
) )  ->  G  e.  ( CC  ^pm  S
) )
4441, 42, 25, 7, 43syl22anc 1217 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
45 reldvg 12817 . . . . . . . . . . 11  |-  ( ( S  C_  CC  /\  G  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  G
) )
465, 44, 45syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  Rel  ( S  _D  G ) )
47 dvadd.bg . . . . . . . . . 10  |-  ( ph  ->  C ( S  _D  G ) L )
48 releldm 4774 . . . . . . . . . 10  |-  ( ( Rel  ( S  _D  G )  /\  C
( S  _D  G
) L )  ->  C  e.  dom  ( S  _D  G ) )
4946, 47, 48syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
50 eqid 2139 . . . . . . . . . 10  |-  ( Jt  X )  =  ( Jt  X )
5150, 3dvcnp2cntop 12832 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  G : X --> CC  /\  X  C_  S )  /\  C  e.  dom  ( S  _D  G ) )  ->  G  e.  ( ( ( Jt  X )  CnP  J ) `  C ) )
525, 25, 7, 49, 51syl31anc 1219 . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( ( Jt  X )  CnP  J
) `  C )
)
533, 50cnplimccntop 12808 . . . . . . . . 9  |-  ( ( X  C_  CC  /\  C  e.  X )  ->  ( G  e.  ( (
( Jt  X )  CnP  J
) `  C )  <->  ( G : X --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) ) )
5411, 23, 53syl2anc 408 . . . . . . . 8  |-  ( ph  ->  ( G  e.  ( ( ( Jt  X )  CnP  J ) `  C )  <->  ( G : X --> CC  /\  ( G `  C )  e.  ( G lim CC  C
) ) ) )
5552, 54mpbid 146 . . . . . . 7  |-  ( ph  ->  ( G : X --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) )
5655simprd 113 . . . . . 6  |-  ( ph  ->  ( G `  C
)  e.  ( G lim
CC  C ) )
5725, 11limcdifap 12800 . . . . . . 7  |-  ( ph  ->  ( G lim CC  C
)  =  ( ( G  |`  { w  e.  X  |  w #  C } ) lim CC  C
) )
58 ssrab2 3182 . . . . . . . . . 10  |-  { w  e.  X  |  w #  C }  C_  X
5958a1i 9 . . . . . . . . 9  |-  ( ph  ->  { w  e.  X  |  w #  C }  C_  X )
6025, 59feqresmpt 5475 . . . . . . . 8  |-  ( ph  ->  ( G  |`  { w  e.  X  |  w #  C } )  =  ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `
 z ) ) )
6160oveq1d 5789 . . . . . . 7  |-  ( ph  ->  ( ( G  |`  { w  e.  X  |  w #  C }
) lim CC  C )  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `  z ) ) lim CC  C ) )
6257, 61eqtrd 2172 . . . . . 6  |-  ( ph  ->  ( G lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `
 z ) ) lim
CC  C ) )
6356, 62eleqtrd 2218 . . . . 5  |-  ( ph  ->  ( G `  C
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( G `
 z ) ) lim
CC  C ) )
643mulcncntop 12723 . . . . . 6  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
655, 6, 7dvcl 12821 . . . . . . . 8  |-  ( (
ph  /\  C ( S  _D  F ) K )  ->  K  e.  CC )
661, 65mpdan 417 . . . . . . 7  |-  ( ph  ->  K  e.  CC )
6725, 23ffvelrnd 5556 . . . . . . 7  |-  ( ph  ->  ( G `  C
)  e.  CC )
6866, 67opelxpd 4572 . . . . . 6  |-  ( ph  -> 
<. K ,  ( G `
 C ) >.  e.  ( CC  X.  CC ) )
6937toponunii 12184 . . . . . . 7  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
7069cncnpi 12397 . . . . . 6  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  ( G `  C ) >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  ( G `  C ) >. )
)
7164, 68, 70sylancr 410 . . . . 5  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  ( G `  C )
>. ) )
7224, 29, 35, 35, 3, 38, 39, 63, 71limccnp2cntop 12815 . . . 4  |-  ( ph  ->  ( K  x.  ( G `  C )
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) ) ) lim
CC  C ) )
73 eqid 2139 . . . . . . . 8  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
742, 3, 73, 5, 25, 7eldvap 12820 . . . . . . 7  |-  ( ph  ->  ( C ( S  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
7547, 74mpbid 146 . . . . . 6  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  L  e.  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
7675simprd 113 . . . . 5  |-  ( ph  ->  L  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
77 cncfmptc 12751 . . . . . . . 8  |-  ( ( ( F `  C
)  e.  CC  /\  X  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  X  |->  ( F `  C ) )  e.  ( X
-cn-> CC ) )
7832, 11, 35, 77syl3anc 1216 . . . . . . 7  |-  ( ph  ->  ( z  e.  X  |->  ( F `  C
) )  e.  ( X -cn-> CC ) )
79 eqidd 2140 . . . . . . 7  |-  ( z  =  C  ->  ( F `  C )  =  ( F `  C ) )
8078, 23, 79cnmptlimc 12812 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  X  |->  ( F `  C ) ) lim CC  C ) )
8132adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  X )  ->  ( F `  C )  e.  CC )
8281fmpttd 5575 . . . . . . . 8  |-  ( ph  ->  ( z  e.  X  |->  ( F `  C
) ) : X --> CC )
8382, 11limcdifap 12800 . . . . . . 7  |-  ( ph  ->  ( ( z  e.  X  |->  ( F `  C ) ) lim CC  C )  =  ( ( ( z  e.  X  |->  ( F `  C ) )  |`  { w  e.  X  |  w #  C }
) lim CC  C )
)
84 resmpt 4867 . . . . . . . . 9  |-  ( { w  e.  X  |  w #  C }  C_  X  ->  ( ( z  e.  X  |->  ( F `  C ) )  |`  { w  e.  X  |  w #  C }
)  =  ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `  C ) ) )
8558, 84mp1i 10 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  X  |->  ( F `  C ) )  |`  { w  e.  X  |  w #  C }
)  =  ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `  C ) ) )
8685oveq1d 5789 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  X  |->  ( F `
 C ) )  |`  { w  e.  X  |  w #  C }
) lim CC  C )  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `  C ) ) lim CC  C ) )
8783, 86eqtrd 2172 . . . . . 6  |-  ( ph  ->  ( ( z  e.  X  |->  ( F `  C ) ) lim CC  C )  =  ( ( z  e.  {
w  e.  X  |  w #  C }  |->  ( F `
 C ) ) lim
CC  C ) )
8880, 87eleqtrd 2218 . . . . 5  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( F `
 C ) ) lim
CC  C ) )
895, 25, 7dvcl 12821 . . . . . . . 8  |-  ( (
ph  /\  C ( S  _D  G ) L )  ->  L  e.  CC )
9047, 89mpdan 417 . . . . . . 7  |-  ( ph  ->  L  e.  CC )
9190, 32opelxpd 4572 . . . . . 6  |-  ( ph  -> 
<. L ,  ( F `
 C ) >.  e.  ( CC  X.  CC ) )
9269cncnpi 12397 . . . . . 6  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. L ,  ( F `  C ) >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. L ,  ( F `  C ) >. )
)
9364, 91, 92sylancr 410 . . . . 5  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. L ,  ( F `  C )
>. ) )
9431, 33, 35, 35, 3, 38, 76, 88, 93limccnp2cntop 12815 . . . 4  |-  ( ph  ->  ( L  x.  ( F `  C )
)  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( F `  C ) ) ) lim
CC  C ) )
953addcncntop 12721 . . . . 5  |-  +  e.  ( ( J  tX  J )  Cn  J
)
9666, 67mulcld 7786 . . . . . 6  |-  ( ph  ->  ( K  x.  ( G `  C )
)  e.  CC )
9790, 32mulcld 7786 . . . . . 6  |-  ( ph  ->  ( L  x.  ( F `  C )
)  e.  CC )
9896, 97opelxpd 4572 . . . . 5  |-  ( ph  -> 
<. ( K  x.  ( G `  C )
) ,  ( L  x.  ( F `  C ) ) >.  e.  ( CC  X.  CC ) )
9969cncnpi 12397 . . . . 5  |-  ( (  +  e.  ( ( J  tX  J )  Cn  J )  /\  <.
( K  x.  ( G `  C )
) ,  ( L  x.  ( F `  C ) ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. ( K  x.  ( G `
 C ) ) ,  ( L  x.  ( F `  C ) ) >. ) )
10095, 98, 99sylancr 410 . . . 4  |-  ( ph  ->  +  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. ( K  x.  ( G `  C ) ) ,  ( L  x.  ( F `  C ) ) >.
) )
10130, 34, 35, 35, 3, 38, 72, 94, 100limccnp2cntop 12815 . . 3  |-  ( ph  ->  ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) lim CC  C ) )
1026adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F : X --> CC )
103102, 28ffvelrnd 5556 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( F `  z
)  e.  CC )
104103, 33subcld 8073 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
105104, 29mulcld 7786 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  x.  ( G `
 z ) )  e.  CC )
10667adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( G `  C
)  e.  CC )
10729, 106subcld 8073 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
108107, 33mulcld 7786 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  e.  CC )
10911adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  C_  CC )
110109, 28sseldd 3098 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  CC )
11111, 23sseldd 3098 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
112111adantr 274 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  C  e.  CC )
113110, 112subcld 8073 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
)  e.  CC )
114 breq1 3932 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w #  C  <->  z #  C
) )
115114elrab 2840 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  C } 
<->  ( z  e.  X  /\  z #  C )
)
116115simprbi 273 . . . . . . . . 9  |-  ( z  e.  { w  e.  X  |  w #  C }  ->  z #  C )
117116adantl 275 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z #  C )
118110, 112, 117subap0d 8406 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( z  -  C
) #  0 )
119105, 108, 113, 118divdirapd 8589 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  +  ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) ) )  /  ( z  -  C ) )  =  ( ( ( ( ( F `  z )  -  ( F `  C )
)  x.  ( G `
 z ) )  /  ( z  -  C ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  x.  ( F `  C
) )  /  (
z  -  C ) ) ) )
120103, 29mulcld 7786 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  z )  x.  ( G `  z )
)  e.  CC )
12133, 29mulcld 7786 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  C )  x.  ( G `  z )
)  e.  CC )
12233, 106mulcld 7786 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  C )  x.  ( G `  C )
)  e.  CC )
123120, 121, 122npncand 8097 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  z )
) )  +  ( ( ( F `  C )  x.  ( G `  z )
)  -  ( ( F `  C )  x.  ( G `  C ) ) ) )  =  ( ( ( F `  z
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
124103, 33, 29subdird 8177 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  x.  ( G `
 z ) )  =  ( ( ( F `  z )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  z )
) ) )
125107, 33mulcomd 7787 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  =  ( ( F `
 C )  x.  ( ( G `  z )  -  ( G `  C )
) ) )
12633, 29, 106subdid 8176 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F `  C )  x.  (
( G `  z
)  -  ( G `
 C ) ) )  =  ( ( ( F `  C
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
127125, 126eqtrd 2172 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  =  ( ( ( F `  C )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  C )
) ) )
128124, 127oveq12d 5792 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  +  ( ( ( G `  z )  -  ( G `  C )
)  x.  ( F `
 C ) ) )  =  ( ( ( ( F `  z )  x.  ( G `  z )
)  -  ( ( F `  C )  x.  ( G `  z ) ) )  +  ( ( ( F `  C )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  C )
) ) ) )
12928, 28elind 3261 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
z  e.  ( X  i^i  X ) )
1306ffnd 5273 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  X )
131130adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  F  Fn  X )
13225ffnd 5273 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  X )
133132adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  G  Fn  X )
134 ssexg 4067 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
13511, 40, 134sylancl 409 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  _V )
136135adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  ->  X  e.  _V )
137 eqid 2139 . . . . . . . . . . 11  |-  ( X  i^i  X )  =  ( X  i^i  X
)
138 eqidd 2140 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( F `  z )  =  ( F `  z ) )
139 eqidd 2140 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  X )  ->  ( G `  z )  =  ( G `  z ) )
140120adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  ( X  i^i  X ) )  ->  ( ( F `  z )  x.  ( G `  z
) )  e.  CC )
141131, 133, 136, 136, 137, 138, 139, 140ofvalg 5991 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  z  e.  ( X  i^i  X ) )  ->  ( ( F  oF  x.  G
) `  z )  =  ( ( F `
 z )  x.  ( G `  z
) ) )
142129, 141mpdan 417 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  x.  G ) `  z )  =  ( ( F `  z
)  x.  ( G `
 z ) ) )
14323, 23elind 3261 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( X  i^i  X ) )
144 eqidd 2140 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( F `  C )  =  ( F `  C ) )
145 eqidd 2140 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  X )  ->  ( G `  C )  =  ( G `  C ) )
146122adantr 274 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  ( X  i^i  X ) )  ->  ( ( F `  C )  x.  ( G `  C
) )  e.  CC )
147131, 133, 136, 136, 137, 144, 145, 146ofvalg 5991 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  { w  e.  X  |  w #  C }
)  /\  C  e.  ( X  i^i  X ) )  ->  ( ( F  oF  x.  G
) `  C )  =  ( ( F `
 C )  x.  ( G `  C
) ) )
148143, 147mpidan 419 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( F  oF  x.  G ) `  C )  =  ( ( F `  C
)  x.  ( G `
 C ) ) )
149142, 148oveq12d 5792 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( F  oF  x.  G
) `  z )  -  ( ( F  oF  x.  G
) `  C )
)  =  ( ( ( F `  z
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
150123, 128, 1493eqtr4d 2182 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  +  ( ( ( G `  z )  -  ( G `  C )
)  x.  ( F `
 C ) ) )  =  ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) ) )
151150oveq1d 5789 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  +  ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) ) )  /  ( z  -  C ) )  =  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )
152104, 29, 113, 118div23apd 8588 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) ) )
153107, 33, 113, 118div23apd 8588 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( G `  z )  -  ( G `  C ) )  x.  ( F `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( F `  C ) ) )
154152, 153oveq12d 5792 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  / 
( z  -  C
) )  +  ( ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  /  ( z  -  C ) ) )  =  ( ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) )
155119, 151, 1543eqtr3d 2180 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  X  |  w #  C } )  -> 
( ( ( ( F  oF  x.  G ) `  z
)  -  ( ( F  oF  x.  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) )
156155mpteq2dva 4018 . . . 4  |-  ( ph  ->  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) )
157156oveq1d 5789 . . 3  |-  ( ph  ->  ( ( z  e. 
{ w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z
)  -  ( ( F  oF  x.  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
)  =  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) lim CC  C ) )
158101, 157eleqtrrd 2219 . 2  |-  ( ph  ->  ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
159 eqid 2139 . . 3  |-  ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) )
160 mulcl 7747 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
161160adantl 275 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
162 inidm 3285 . . . 4  |-  ( X  i^i  X )  =  X
163161, 6, 25, 135, 135, 162off 5994 . . 3  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
1642, 3, 159, 5, 163, 7eldvap 12820 . 2  |-  ( ph  ->  ( C ( S  _D  ( F  oF  x.  G )
) ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C )
) )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  (
( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  { w  e.  X  |  w #  C }  |->  ( ( ( ( F  oF  x.  G ) `  z )  -  (
( F  oF  x.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) ) ) )
16510, 158, 164mpbir2and 928 1  |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {crab 2420   _Vcvv 2686    i^i cin 3070    C_ wss 3071   <.cop 3530   U.cuni 3736   class class class wbr 3929    |-> cmpt 3989    X. cxp 4537   dom cdm 4539    |` cres 4541    o. ccom 4543   Rel wrel 4544    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    oFcof 5980    ^pm cpm 6543   CCcc 7618    + caddc 7623    x. cmul 7625    - cmin 7933   # cap 8343    / cdiv 8432   abscabs 10769   ↾t crest 12120   MetOpencmopn 12154   Topctop 12164  TopOnctopon 12177   intcnt 12262    Cn ccn 12354    CnP ccnp 12355    tX ctx 12421   -cn->ccncf 12726   lim CC climc 12792    _D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvmulxx  12837  dvimulf  12839  dvef  12856
  Copyright terms: Public domain W3C validator