ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn Unicode version

Theorem tfrcllemsucfn 6250
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6261. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllemsucfn.3  |-  ( ph  ->  z  e.  X )
tfrcllemsucfn.4  |-  ( ph  ->  g : z --> S )
tfrcllemsucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrcllemsucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Distinct variable groups:    f, G, x    S, f, x    f, X, x    f, g    ph, f, x    z, f, x
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    S( y, z, g)    F( x, y, z, f, g)    G( y, z, g)    X( y, z, g)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3  |-  ( ph  ->  g : z --> S )
2 tfrcllemsucfn.3 . . . 4  |-  ( ph  ->  z  e.  X )
32elexd 2699 . . 3  |-  ( ph  ->  z  e.  _V )
4 tfrcl.x . . . . 5  |-  ( ph  ->  Ord  X )
5 ordelon 4305 . . . . 5  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
64, 2, 5syl2anc 408 . . . 4  |-  ( ph  ->  z  e.  On )
7 eloni 4297 . . . 4  |-  ( z  e.  On  ->  Ord  z )
8 ordirr 4457 . . . 4  |-  ( Ord  z  ->  -.  z  e.  z )
96, 7, 83syl 17 . . 3  |-  ( ph  ->  -.  z  e.  z )
10 feq2 5256 . . . . . . 7  |-  ( x  =  z  ->  (
f : x --> S  <->  f :
z --> S ) )
1110imbi1d 230 . . . . . 6  |-  ( x  =  z  ->  (
( f : x --> S  ->  ( G `  f )  e.  S
)  <->  ( f : z --> S  ->  ( G `  f )  e.  S ) ) )
1211albidv 1796 . . . . 5  |-  ( x  =  z  ->  ( A. f ( f : x --> S  ->  ( G `  f )  e.  S )  <->  A. f
( f : z --> S  ->  ( G `  f )  e.  S
) ) )
13 tfrcl.ex . . . . . . . 8  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
14133expia 1183 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
f : x --> S  -> 
( G `  f
)  e.  S ) )
1514alrimiv 1846 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f : x --> S  ->  ( G `  f )  e.  S
) )
1615ralrimiva 2505 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
1712, 16, 2rspcdva 2794 . . . 4  |-  ( ph  ->  A. f ( f : z --> S  -> 
( G `  f
)  e.  S ) )
18 feq1 5255 . . . . . 6  |-  ( f  =  g  ->  (
f : z --> S  <-> 
g : z --> S ) )
19 fveq2 5421 . . . . . . 7  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
2019eleq1d 2208 . . . . . 6  |-  ( f  =  g  ->  (
( G `  f
)  e.  S  <->  ( G `  g )  e.  S
) )
2118, 20imbi12d 233 . . . . 5  |-  ( f  =  g  ->  (
( f : z --> S  ->  ( G `  f )  e.  S
)  <->  ( g : z --> S  ->  ( G `  g )  e.  S ) ) )
2221spv 1832 . . . 4  |-  ( A. f ( f : z --> S  ->  ( G `  f )  e.  S )  ->  (
g : z --> S  ->  ( G `  g )  e.  S
) )
2317, 1, 22sylc 62 . . 3  |-  ( ph  ->  ( G `  g
)  e.  S )
24 fsnunf 5620 . . 3  |-  ( ( g : z --> S  /\  ( z  e. 
_V  /\  -.  z  e.  z )  /\  ( G `  g )  e.  S )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } ) : ( z  u. 
{ z } ) --> S )
251, 3, 9, 23, 24syl121anc 1221 . 2  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
26 df-suc 4293 . . 3  |-  suc  z  =  ( z  u. 
{ z } )
2726feq2i 5266 . 2  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> S  <-> 
( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
2825, 27sylibr 133 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 962   A.wal 1329    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686    u. cun 3069   {csn 3527   <.cop 3530   Ord word 4284   Oncon0 4285   suc csuc 4287    |` cres 4541   Fun wfun 5117   -->wf 5119   ` cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  tfrcllemsucaccv  6251  tfrcllembfn  6254
  Copyright terms: Public domain W3C validator