ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn Unicode version

Theorem tfrcllemsucfn 6022
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6033. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllemsucfn.3  |-  ( ph  ->  z  e.  X )
tfrcllemsucfn.4  |-  ( ph  ->  g : z --> S )
tfrcllemsucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrcllemsucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Distinct variable groups:    f, G, x    S, f, x    f, X, x    f, g    ph, f, x    z, f, x
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    S( y, z, g)    F( x, y, z, f, g)    G( y, z, g)    X( y, z, g)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3  |-  ( ph  ->  g : z --> S )
2 tfrcllemsucfn.3 . . . 4  |-  ( ph  ->  z  e.  X )
32elexd 2621 . . 3  |-  ( ph  ->  z  e.  _V )
4 tfrcl.x . . . . 5  |-  ( ph  ->  Ord  X )
5 ordelon 4166 . . . . 5  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
64, 2, 5syl2anc 403 . . . 4  |-  ( ph  ->  z  e.  On )
7 eloni 4158 . . . 4  |-  ( z  e.  On  ->  Ord  z )
8 ordirr 4313 . . . 4  |-  ( Ord  z  ->  -.  z  e.  z )
96, 7, 83syl 17 . . 3  |-  ( ph  ->  -.  z  e.  z )
10 feq2 5082 . . . . . . 7  |-  ( x  =  z  ->  (
f : x --> S  <->  f :
z --> S ) )
1110imbi1d 229 . . . . . 6  |-  ( x  =  z  ->  (
( f : x --> S  ->  ( G `  f )  e.  S
)  <->  ( f : z --> S  ->  ( G `  f )  e.  S ) ) )
1211albidv 1747 . . . . 5  |-  ( x  =  z  ->  ( A. f ( f : x --> S  ->  ( G `  f )  e.  S )  <->  A. f
( f : z --> S  ->  ( G `  f )  e.  S
) ) )
13 tfrcl.ex . . . . . . . 8  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
14133expia 1141 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
f : x --> S  -> 
( G `  f
)  e.  S ) )
1514alrimiv 1797 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f : x --> S  ->  ( G `  f )  e.  S
) )
1615ralrimiva 2439 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. f ( f : x --> S  ->  ( G `  f )  e.  S ) )
1712, 16, 2rspcdva 2715 . . . 4  |-  ( ph  ->  A. f ( f : z --> S  -> 
( G `  f
)  e.  S ) )
18 feq1 5081 . . . . . 6  |-  ( f  =  g  ->  (
f : z --> S  <-> 
g : z --> S ) )
19 fveq2 5229 . . . . . . 7  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
2019eleq1d 2151 . . . . . 6  |-  ( f  =  g  ->  (
( G `  f
)  e.  S  <->  ( G `  g )  e.  S
) )
2118, 20imbi12d 232 . . . . 5  |-  ( f  =  g  ->  (
( f : z --> S  ->  ( G `  f )  e.  S
)  <->  ( g : z --> S  ->  ( G `  g )  e.  S ) ) )
2221spv 1783 . . . 4  |-  ( A. f ( f : z --> S  ->  ( G `  f )  e.  S )  ->  (
g : z --> S  ->  ( G `  g )  e.  S
) )
2317, 1, 22sylc 61 . . 3  |-  ( ph  ->  ( G `  g
)  e.  S )
24 fsnunf 5414 . . 3  |-  ( ( g : z --> S  /\  ( z  e. 
_V  /\  -.  z  e.  z )  /\  ( G `  g )  e.  S )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } ) : ( z  u. 
{ z } ) --> S )
251, 3, 9, 23, 24syl121anc 1175 . 2  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
26 df-suc 4154 . . 3  |-  suc  z  =  ( z  u. 
{ z } )
2726feq2i 5091 . 2  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> S  <-> 
( g  u.  { <. z ,  ( G `
 g ) >. } ) : ( z  u.  { z } ) --> S )
2825, 27sylibr 132 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } ) : suc  z
--> S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    /\ w3a 920   A.wal 1283    = wceq 1285    e. wcel 1434   {cab 2069   A.wral 2353   E.wrex 2354   _Vcvv 2610    u. cun 2980   {csn 3416   <.cop 3419   Ord word 4145   Oncon0 4146   suc csuc 4148    |` cres 4393   Fun wfun 4946   -->wf 4948   ` cfv 4952  recscrecs 5973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960
This theorem is referenced by:  tfrcllemsucaccv  6023  tfrcllembfn  6026
  Copyright terms: Public domain W3C validator