ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0addcl Unicode version

Theorem un0addcl 9010
Description: If  S is closed under addition, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0addcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  S )
Assertion
Ref Expression
un0addcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  +  N
)  e.  T )

Proof of Theorem un0addcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2206 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3217 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 183 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2206 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3217 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 183 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3239 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtrri 3132 . . . . . . . 8  |-  S  C_  T
10 un0addcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  S )
119, 10sseldi 3095 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  +  N
)  e.  T )
1211expr 372 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3097 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514addid2d 7912 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  +  N )  =  N )
169a1i 9 . . . . . . . . . 10  |-  ( ph  ->  S  C_  T )
1716sselda 3097 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  T )
1815, 17eqeltrd 2216 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  +  N )  e.  T )
19 elsni 3545 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2019oveq1d 5789 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  +  N )  =  ( 0  +  N ) )
2120eleq1d 2208 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  +  N )  e.  T  <->  ( 0  +  N )  e.  T
) )
2218, 21syl5ibrcom 156 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  +  N )  e.  T
) )
2322impancom 258 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  +  N
)  e.  T ) )
2412, 23jaodan 786 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
257, 24sylan2b 285 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  +  N )  e.  T ) )
26 0cnd 7759 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
2726snssd 3665 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
2813, 27unssd 3252 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
291, 28eqsstrid 3143 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3029sselda 3097 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3130addid1d 7911 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  +  0 )  =  M )
32 simpr 109 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  T )
3331, 32eqeltrd 2216 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  +  0 )  e.  T )
34 elsni 3545 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3534oveq2d 5790 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  +  N )  =  ( M  +  0 ) )
3635eleq1d 2208 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  +  N )  e.  T  <->  ( M  + 
0 )  e.  T
) )
3733, 36syl5ibrcom 156 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  +  N )  e.  T
) )
3825, 37jaod 706 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  +  N )  e.  T ) )
394, 38syl5bi 151 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  +  N )  e.  T ) )
4039impr 376 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  +  N
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480    u. cun 3069    C_ wss 3071   {csn 3527  (class class class)co 5774   CCcc 7618   0cc0 7620    + caddc 7623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-mulcl 7718  ax-addcom 7720  ax-i2m1 7725  ax-0id 7728
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  nn0addcl  9012
  Copyright terms: Public domain W3C validator