ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddmnf1 Unicode version

Theorem xaddmnf1 9631
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 7822 . . . 4  |- -oo  e.  RR*
2 xaddval 9628 . . . 4  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
31, 2mpan2 421 . . 3  |-  ( A  e.  RR*  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
43adantr 274 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
5 ifnefalse 3485 . . 3  |-  ( A  =/= +oo  ->  if ( A  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) )  =  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) ) )
6 mnfnepnf 7821 . . . . . 6  |- -oo  =/= +oo
7 ifnefalse 3485 . . . . . 6  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo ,  0 , -oo )  = -oo )
86, 7ax-mp 5 . . . . 5  |-  if ( -oo  = +oo , 
0 , -oo )  = -oo
9 ifnefalse 3485 . . . . . . 7  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) )  =  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) )
106, 9ax-mp 5 . . . . . 6  |-  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  =  if ( -oo  = -oo , -oo ,  ( A  + -oo )
)
11 eqid 2139 . . . . . . 7  |- -oo  = -oo
1211iftruei 3480 . . . . . 6  |-  if ( -oo  = -oo , -oo ,  ( A  + -oo ) )  = -oo
1310, 12eqtri 2160 . . . . 5  |-  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  = -oo
14 ifeq12 3488 . . . . 5  |-  ( ( if ( -oo  = +oo ,  0 , -oo )  = -oo  /\  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  = -oo )  ->  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  =  if ( A  = -oo , -oo , -oo ) )
158, 13, 14mp2an 422 . . . 4  |-  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  =  if ( A  = -oo , -oo , -oo )
16 xrmnfdc 9626 . . . . 5  |-  ( A  e.  RR*  -> DECID  A  = -oo )
17 ifiddc 3505 . . . . 5  |-  (DECID  A  = -oo  ->  if ( A  = -oo , -oo , -oo )  = -oo )
1816, 17syl 14 . . . 4  |-  ( A  e.  RR*  ->  if ( A  = -oo , -oo , -oo )  = -oo )
1915, 18syl5eq 2184 . . 3  |-  ( A  e.  RR*  ->  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  = -oo )
205, 19sylan9eqr 2194 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  if ( A  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) )  = -oo )
214, 20eqtrd 2172 1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   ifcif 3474  (class class class)co 5774   0cc0 7620    + caddc 7623   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799   +ecxad 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-rnegex 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-xadd 9560
This theorem is referenced by:  xaddnepnf  9641  xaddcom  9644  xnegdi  9651  xleadd1a  9656  xsubge0  9664  xposdif  9665  xlesubadd  9666  xleaddadd  9670  xblss2ps  12573  xblss2  12574
  Copyright terms: Public domain W3C validator