ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblss2 Unicode version

Theorem xblss2 12574
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 12576 for extended metrics, we have to assume the balls are a finite distance apart, or else  P will not even be in the infinity ball around  Q. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xblss2.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
xblss2.2  |-  ( ph  ->  P  e.  X )
xblss2.3  |-  ( ph  ->  Q  e.  X )
xblss2.4  |-  ( ph  ->  R  e.  RR* )
xblss2.5  |-  ( ph  ->  S  e.  RR* )
xblss2.6  |-  ( ph  ->  ( P D Q )  e.  RR )
xblss2.7  |-  ( ph  ->  ( P D Q )  <_  ( S +e  -e R ) )
Assertion
Ref Expression
xblss2  |-  ( ph  ->  ( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )

Proof of Theorem xblss2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xblss2.1 . . . . . 6  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2 xblss2.2 . . . . . 6  |-  ( ph  ->  P  e.  X )
3 xblss2.4 . . . . . 6  |-  ( ph  ->  R  e.  RR* )
4 elbl 12560 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
51, 2, 3, 4syl3anc 1216 . . . . 5  |-  ( ph  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
65simprbda 380 . . . 4  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  x  e.  X
)
71adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  D  e.  ( *Met `  X
) )
8 xblss2.3 . . . . . . . . 9  |-  ( ph  ->  Q  e.  X )
98adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  Q  e.  X
)
10 xmetcl 12521 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
117, 9, 6, 10syl3anc 1216 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  e.  RR* )
1211adantr 274 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  ( Q D x )  e. 
RR* )
13 xblss2.6 . . . . . . . . . 10  |-  ( ph  ->  ( P D Q )  e.  RR )
1413adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D Q )  e.  RR )
1514rexrd 7815 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D Q )  e.  RR* )
163adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  R  e.  RR* )
1715, 16xaddcld 9667 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e R )  e. 
RR* )
1817adantr 274 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( P D Q ) +e R )  e.  RR* )
19 xblss2.5 . . . . . . 7  |-  ( ph  ->  S  e.  RR* )
2019ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  S  e.  RR* )
212adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  P  e.  X
)
22 xmetcl 12521 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
237, 21, 6, 22syl3anc 1216 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D x )  e.  RR* )
2415, 23xaddcld 9667 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e ( P D x ) )  e. 
RR* )
25 xmettri2 12530 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X  /\  x  e.  X ) )  -> 
( Q D x )  <_  ( ( P D Q ) +e ( P D x ) ) )
267, 21, 9, 6, 25syl13anc 1218 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  <_  (
( P D Q ) +e ( P D x ) ) )
275simplbda 381 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D x )  <  R
)
28 xltadd2 9660 . . . . . . . . . 10  |-  ( ( ( P D x )  e.  RR*  /\  R  e.  RR*  /\  ( P D Q )  e.  RR )  ->  (
( P D x )  <  R  <->  ( ( P D Q ) +e ( P D x ) )  < 
( ( P D Q ) +e
R ) ) )
2923, 16, 14, 28syl3anc 1216 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D x )  < 
R  <->  ( ( P D Q ) +e ( P D x ) )  < 
( ( P D Q ) +e
R ) ) )
3027, 29mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e ( P D x ) )  < 
( ( P D Q ) +e
R ) )
3111, 24, 17, 26, 30xrlelttrd 9593 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  <  (
( P D Q ) +e R ) )
3231adantr 274 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  ( Q D x )  < 
( ( P D Q ) +e
R ) )
3319adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  S  e.  RR* )
3416xnegcld 9638 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  -e R  e. 
RR* )
3533, 34xaddcld 9667 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( S +e  -e R )  e.  RR* )
36 xblss2.7 . . . . . . . . . 10  |-  ( ph  ->  ( P D Q )  <_  ( S +e  -e R ) )
3736adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( P D Q )  <_  ( S +e  -e
R ) )
38 xleadd1a 9656 . . . . . . . . 9  |-  ( ( ( ( P D Q )  e.  RR*  /\  ( S +e  -e R )  e. 
RR*  /\  R  e.  RR* )  /\  ( P D Q )  <_ 
( S +e  -e R ) )  ->  ( ( P D Q ) +e R )  <_ 
( ( S +e  -e R ) +e R ) )
3915, 35, 16, 37, 38syl31anc 1219 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q ) +e R )  <_ 
( ( S +e  -e R ) +e R ) )
4039adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( P D Q ) +e R )  <_  ( ( S +e  -e
R ) +e
R ) )
41 xnpcan 9655 . . . . . . . 8  |-  ( ( S  e.  RR*  /\  R  e.  RR )  ->  (
( S +e  -e R ) +e R )  =  S )
4233, 41sylan 281 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( S +e  -e R ) +e R )  =  S )
4340, 42breqtrd 3954 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  (
( P D Q ) +e R )  <_  S )
4412, 18, 20, 32, 43xrltletrd 9594 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  e.  RR )  ->  ( Q D x )  < 
S )
4527adantr 274 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D x )  < 
R )
4636ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D Q )  <_ 
( S +e  -e R ) )
4719ad2antrr 479 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  S  e.  RR* )
48 xrpnfdc 9625 . . . . . . . . . . . . 13  |-  ( S  e.  RR*  -> DECID  S  = +oo )
4947, 48syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  -> DECID  S  = +oo )
50 0xr 7812 . . . . . . . . . . . . . . . 16  |-  0  e.  RR*
5150a1i 9 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  e.  RR* )
52 xmetge0 12534 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  0  <_  ( P D Q ) )
537, 21, 9, 52syl3anc 1216 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  ( P D Q ) )
5451, 15, 35, 53, 37xrletrd 9595 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  ( S +e  -e
R ) )
55 ge0nemnf 9607 . . . . . . . . . . . . . 14  |-  ( ( ( S +e  -e R )  e. 
RR*  /\  0  <_  ( S +e  -e R ) )  ->  ( S +e  -e R )  =/= -oo )
5635, 54, 55syl2anc 408 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( S +e  -e R )  =/= -oo )
5756adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =/= -oo )
58 xaddmnf1 9631 . . . . . . . . . . . . . . . . 17  |-  ( ( S  e.  RR*  /\  S  =/= +oo )  ->  ( S +e -oo )  = -oo )
5958ex 114 . . . . . . . . . . . . . . . 16  |-  ( S  e.  RR*  ->  ( S  =/= +oo  ->  ( S +e -oo )  = -oo ) )
6047, 59syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S  =/= +oo  ->  ( S +e -oo )  = -oo ) )
61 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  R  = +oo )
62 xnegeq 9610 . . . . . . . . . . . . . . . . . . 19  |-  ( R  = +oo  ->  -e
R  =  -e +oo )
6361, 62syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  -e
R  =  -e +oo )
64 xnegpnf 9611 . . . . . . . . . . . . . . . . . 18  |-  -e +oo  = -oo
6563, 64syl6eq 2188 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  -e
R  = -oo )
6665oveq2d 5790 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =  ( S +e -oo ) )
6766eqeq1d 2148 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  (
( S +e  -e R )  = -oo  <->  ( S +e -oo )  = -oo ) )
6860, 67sylibrd 168 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S  =/= +oo  ->  ( S +e  -e
R )  = -oo ) )
6968a1d 22 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  (DECID  S  = +oo  ->  ( S  =/= +oo  ->  ( S +e  -e R )  = -oo )
) )
7069necon1ddc 2386 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  (DECID  S  = +oo  ->  ( ( S +e  -e
R )  =/= -oo  ->  S  = +oo )
) )
7149, 57, 70mp2d 47 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  S  = +oo )
7271, 65oveq12d 5792 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =  ( +oo +e -oo ) )
73 pnfaddmnf 9633 . . . . . . . . . 10  |-  ( +oo +e -oo )  =  0
7472, 73syl6eq 2188 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( S +e  -e
R )  =  0 )
7546, 74breqtrd 3954 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D Q )  <_ 
0 )
7653biantrud 302 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  <_ 
0  <->  ( ( P D Q )  <_ 
0  /\  0  <_  ( P D Q ) ) ) )
77 xrletri3 9588 . . . . . . . . . . 11  |-  ( ( ( P D Q )  e.  RR*  /\  0  e.  RR* )  ->  (
( P D Q )  =  0  <->  (
( P D Q )  <_  0  /\  0  <_  ( P D Q ) ) ) )
7815, 50, 77sylancl 409 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  =  0  <->  ( ( P D Q )  <_ 
0  /\  0  <_  ( P D Q ) ) ) )
79 xmeteq0 12528 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  ( ( P D Q )  =  0  <->  P  =  Q
) )
807, 21, 9, 79syl3anc 1216 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  =  0  <->  P  =  Q
) )
8176, 78, 803bitr2d 215 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( ( P D Q )  <_ 
0  <->  P  =  Q
) )
8281adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  (
( P D Q )  <_  0  <->  P  =  Q ) )
8375, 82mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  P  =  Q )
8483oveq1d 5789 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( P D x )  =  ( Q D x ) )
8561, 71eqtr4d 2175 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  R  =  S )
8645, 84, 853brtr3d 3959 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( P ( ball `  D ) R ) )  /\  R  = +oo )  ->  ( Q D x )  < 
S )
87 xmetge0 12534 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  0  <_  ( P D x ) )
887, 21, 6, 87syl3anc 1216 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  ( P D x ) )
8951, 23, 16, 88, 27xrlelttrd 9593 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <  R
)
9051, 16, 89xrltled 9585 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  0  <_  R
)
91 ge0nemnf 9607 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  0  <_  R )  ->  R  =/= -oo )
9216, 90, 91syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  R  =/= -oo )
9316, 92jca 304 . . . . . 6  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( R  e. 
RR*  /\  R  =/= -oo ) )
94 xrnemnf 9564 . . . . . 6  |-  ( ( R  e.  RR*  /\  R  =/= -oo )  <->  ( R  e.  RR  \/  R  = +oo ) )
9593, 94sylib 121 . . . . 5  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( R  e.  RR  \/  R  = +oo ) )
9644, 86, 95mpjaodan 787 . . . 4  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( Q D x )  <  S
)
97 elbl 12560 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( Q ( ball `  D
) S )  <->  ( x  e.  X  /\  ( Q D x )  < 
S ) ) )
987, 9, 33, 97syl3anc 1216 . . . 4  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  ( x  e.  ( Q ( ball `  D ) S )  <-> 
( x  e.  X  /\  ( Q D x )  <  S ) ) )
996, 96, 98mpbir2and 928 . . 3  |-  ( (
ph  /\  x  e.  ( P ( ball `  D
) R ) )  ->  x  e.  ( Q ( ball `  D
) S ) )
10099ex 114 . 2  |-  ( ph  ->  ( x  e.  ( P ( ball `  D
) R )  ->  x  e.  ( Q
( ball `  D ) S ) ) )
101100ssrdv 3103 1  |-  ( ph  ->  ( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308    C_ wss 3071   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   RRcr 7619   0cc0 7620   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799    < clt 7800    <_ cle 7801    -ecxne 9556   +ecxad 9557   *Metcxmet 12149   ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-2 8779  df-xneg 9559  df-xadd 9560  df-psmet 12156  df-xmet 12157  df-bl 12159
This theorem is referenced by:  blss2  12576  ssbl  12595
  Copyright terms: Public domain W3C validator