ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 7080
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 7035 . 2 1 ∈ ℂ
21elexi 2584 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1409  Vcvv 2574  cc 6945  1c1 6948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038  ax-1cn 7035
This theorem depends on definitions:  df-bi 114  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-v 2576
This theorem is referenced by:  nn1suc  8009  nn0ind-raph  8414  fzprval  9046  fztpval  9047  m1expcl2  9442  1exp  9449  facnn  9595  fac0  9596
  Copyright terms: Public domain W3C validator