ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmptv GIF version

Theorem cbvmptv 3852
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.)
Hypothesis
Ref Expression
cbvmptv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptv (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvmptv
StepHypRef Expression
1 nfcv 2178 . 2 𝑦𝐵
2 nfcv 2178 . 2 𝑥𝐶
3 cbvmptv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvmpt 3851 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  cmpt 3818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-mpt 3820
This theorem is referenced by:  frecsuc  5991  caucvgsrlembnd  6883  frec2uzzd  9160  frec2uzsucd  9161  climcvg1n  9843
  Copyright terms: Public domain W3C validator