Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoti GIF version

Theorem isoti 6411
 Description: An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
Assertion
Ref Expression
isoti (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣   𝑢,𝐹,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem isoti
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isocnv 5479 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isotilem 6410 . . . 4 (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
31, 2syl 14 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
4 isotilem 6410 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
53, 4impbid 124 . 2 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
6 equequ1 1614 . . . 4 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
7 breq1 3795 . . . . . 6 (𝑥 = 𝑢 → (𝑥𝑆𝑦𝑢𝑆𝑦))
87notbid 602 . . . . 5 (𝑥 = 𝑢 → (¬ 𝑥𝑆𝑦 ↔ ¬ 𝑢𝑆𝑦))
9 breq2 3796 . . . . . 6 (𝑥 = 𝑢 → (𝑦𝑆𝑥𝑦𝑆𝑢))
109notbid 602 . . . . 5 (𝑥 = 𝑢 → (¬ 𝑦𝑆𝑥 ↔ ¬ 𝑦𝑆𝑢))
118, 10anbi12d 450 . . . 4 (𝑥 = 𝑢 → ((¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥) ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)))
126, 11bibi12d 228 . . 3 (𝑥 = 𝑢 → ((𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ (𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢))))
13 equequ2 1615 . . . 4 (𝑦 = 𝑣 → (𝑢 = 𝑦𝑢 = 𝑣))
14 breq2 3796 . . . . . 6 (𝑦 = 𝑣 → (𝑢𝑆𝑦𝑢𝑆𝑣))
1514notbid 602 . . . . 5 (𝑦 = 𝑣 → (¬ 𝑢𝑆𝑦 ↔ ¬ 𝑢𝑆𝑣))
16 breq1 3795 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝑆𝑢𝑣𝑆𝑢))
1716notbid 602 . . . . 5 (𝑦 = 𝑣 → (¬ 𝑦𝑆𝑢 ↔ ¬ 𝑣𝑆𝑢))
1815, 17anbi12d 450 . . . 4 (𝑦 = 𝑣 → ((¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢) ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))
1913, 18bibi12d 228 . . 3 (𝑦 = 𝑣 → ((𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)) ↔ (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
2012, 19cbvral2v 2558 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))
215, 20syl6bb 189 1 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 101   ↔ wb 102  ∀wral 2323   class class class wbr 3792  ◡ccnv 4372   Isom wiso 4931 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-isom 4939 This theorem is referenced by:  supisoti  6414
 Copyright terms: Public domain W3C validator