ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoti GIF version

Theorem isoti 6894
Description: An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
Assertion
Ref Expression
isoti (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝐵,𝑣   𝑢,𝐹,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem isoti
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isocnv 5712 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isotilem 6893 . . . 4 (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
31, 2syl 14 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) → ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
4 isotilem 6893 . . 3 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
53, 4impbid 128 . 2 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥))))
6 equequ1 1688 . . . 4 (𝑥 = 𝑢 → (𝑥 = 𝑦𝑢 = 𝑦))
7 breq1 3932 . . . . . 6 (𝑥 = 𝑢 → (𝑥𝑆𝑦𝑢𝑆𝑦))
87notbid 656 . . . . 5 (𝑥 = 𝑢 → (¬ 𝑥𝑆𝑦 ↔ ¬ 𝑢𝑆𝑦))
9 breq2 3933 . . . . . 6 (𝑥 = 𝑢 → (𝑦𝑆𝑥𝑦𝑆𝑢))
109notbid 656 . . . . 5 (𝑥 = 𝑢 → (¬ 𝑦𝑆𝑥 ↔ ¬ 𝑦𝑆𝑢))
118, 10anbi12d 464 . . . 4 (𝑥 = 𝑢 → ((¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥) ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)))
126, 11bibi12d 234 . . 3 (𝑥 = 𝑢 → ((𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ (𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢))))
13 equequ2 1689 . . . 4 (𝑦 = 𝑣 → (𝑢 = 𝑦𝑢 = 𝑣))
14 breq2 3933 . . . . . 6 (𝑦 = 𝑣 → (𝑢𝑆𝑦𝑢𝑆𝑣))
1514notbid 656 . . . . 5 (𝑦 = 𝑣 → (¬ 𝑢𝑆𝑦 ↔ ¬ 𝑢𝑆𝑣))
16 breq1 3932 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝑆𝑢𝑣𝑆𝑢))
1716notbid 656 . . . . 5 (𝑦 = 𝑣 → (¬ 𝑦𝑆𝑢 ↔ ¬ 𝑣𝑆𝑢))
1815, 17anbi12d 464 . . . 4 (𝑦 = 𝑣 → ((¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢) ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))
1913, 18bibi12d 234 . . 3 (𝑦 = 𝑣 → ((𝑢 = 𝑦 ↔ (¬ 𝑢𝑆𝑦 ∧ ¬ 𝑦𝑆𝑢)) ↔ (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
2012, 19cbvral2v 2665 . 2 (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))
215, 20syl6bb 195 1 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wral 2416   class class class wbr 3929  ccnv 4538   Isom wiso 5124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132
This theorem is referenced by:  supisoti  6897
  Copyright terms: Public domain W3C validator