ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 GIF version

Theorem climge0 11094
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1 𝑍 = (ℤ𝑀)
climrecl.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climge0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 climrecl.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32adantr 274 . . . . . 6 ((𝜑𝐴 < 0) → 𝑀 ∈ ℤ)
4 climrecl.3 . . . . . . . . . 10 (𝜑𝐹𝐴)
5 climrecl.4 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 4, 5climrecl 11093 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
76adantr 274 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
87renegcld 8142 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
96lt0neg1d 8277 . . . . . . . 8 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
109biimpa 294 . . . . . . 7 ((𝜑𝐴 < 0) → 0 < -𝐴)
118, 10elrpd 9481 . . . . . 6 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ+)
12 eqidd 2140 . . . . . 6 (((𝜑𝐴 < 0) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
134adantr 274 . . . . . 6 ((𝜑𝐴 < 0) → 𝐹𝐴)
141, 3, 11, 12, 13climi2 11057 . . . . 5 ((𝜑𝐴 < 0) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
151r19.2uz 10765 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴 → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
1614, 15syl 14 . . . 4 ((𝜑𝐴 < 0) → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
17 simprr 521 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
185ad2ant2r 500 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) ∈ ℝ)
197adantr 274 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ)
208adantr 274 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ)
2118, 19, 20absdifltd 10950 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴))))
2217, 21mpbid 146 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴)))
2322simprd 113 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < (𝐴 + -𝐴))
2419recnd 7794 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ)
2524negidd 8063 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0)
2623, 25breqtrd 3954 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < 0)
27 climge0.5 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
2827ad2ant2r 500 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹𝑘))
29 0red 7767 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ)
3029, 18lenltd 7880 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹𝑘) ↔ ¬ (𝐹𝑘) < 0))
3128, 30mpbid 146 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹𝑘) < 0)
3226, 31pm2.21fal 1351 . . . 4 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ⊥)
3316, 32rexlimddv 2554 . . 3 ((𝜑𝐴 < 0) → ⊥)
3433inegd 1350 . 2 (𝜑 → ¬ 𝐴 < 0)
35 0re 7766 . . 3 0 ∈ ℝ
36 lenlt 7840 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3735, 6, 36sylancr 410 . 2 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3834, 37mpbird 166 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wfal 1336  wcel 1480  wral 2416  wrex 2417   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620   + caddc 7623   < clt 7800  cle 7801  cmin 7933  -cneg 7934  cz 9054  cuz 9326  abscabs 10769  cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  climle  11103
  Copyright terms: Public domain W3C validator