![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renfdisj | GIF version |
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3308 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
2 | vex 2613 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | elpr 3437 | . . . 4 ⊢ (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞)) |
4 | renepnf 7280 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
5 | 4 | necon2bi 2304 | . . . . 5 ⊢ (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ) |
6 | renemnf 7281 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
7 | 6 | necon2bi 2304 | . . . . 5 ⊢ (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ) |
8 | 5, 7 | jaoi 669 | . . . 4 ⊢ ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ) |
9 | 3, 8 | sylbi 119 | . . 3 ⊢ (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ) |
10 | 9 | con2i 590 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
11 | 1, 10 | mprgbir 2426 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∨ wo 662 = wceq 1285 ∈ wcel 1434 ∩ cin 2981 ∅c0 3267 {cpr 3417 ℝcr 7094 +∞cpnf 7264 -∞cmnf 7265 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-un 4216 ax-setind 4308 ax-cnex 7181 ax-resscn 7182 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-sn 3422 df-pr 3423 df-uni 3622 df-pnf 7269 df-mnf 7270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |