ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrsrg GIF version

Theorem distrsrg 6902
Description: Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
Assertion
Ref Expression
distrsrg ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))

Proof of Theorem distrsrg
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6870 . 2 R = ((P × P) / ~R )
2 addsrpr 6888 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R )
3 mulsrpr 6889 . 2 (((𝑥P𝑦P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))), ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣)))⟩] ~R )
4 mulsrpr 6889 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
5 mulsrpr 6889 . 2 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R )
6 addsrpr 6888 . 2 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R +R [⟨((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)), ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))⟩] ~R ) = [⟨(((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))), (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)))⟩] ~R )
7 addclpr 6693 . . . 4 ((𝑧P𝑣P) → (𝑧 +P 𝑣) ∈ P)
87ad2ant2r 486 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 +P 𝑣) ∈ P)
9 addclpr 6693 . . . 4 ((𝑤P𝑢P) → (𝑤 +P 𝑢) ∈ P)
109ad2ant2l 485 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑢) ∈ P)
118, 10jca 294 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
12 mulclpr 6728 . . . . 5 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
1312ad2ant2r 486 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑧) ∈ P)
14 mulclpr 6728 . . . . 5 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
1514ad2ant2l 485 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑤) ∈ P)
16 addclpr 6693 . . . 4 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1713, 15, 16syl2anc 397 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
18 mulclpr 6728 . . . . 5 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
1918ad2ant2rl 488 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 ·P 𝑤) ∈ P)
20 mulclpr 6728 . . . . 5 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
2120ad2ant2lr 487 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 ·P 𝑧) ∈ P)
22 addclpr 6693 . . . 4 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2319, 21, 22syl2anc 397 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
2417, 23jca 294 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
25 mulclpr 6728 . . . . 5 ((𝑥P𝑣P) → (𝑥 ·P 𝑣) ∈ P)
2625ad2ant2r 486 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑣) ∈ P)
27 mulclpr 6728 . . . . 5 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
2827ad2ant2l 485 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑢) ∈ P)
29 addclpr 6693 . . . 4 (((𝑥 ·P 𝑣) ∈ P ∧ (𝑦 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
3026, 28, 29syl2anc 397 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P)
31 mulclpr 6728 . . . . 5 ((𝑥P𝑢P) → (𝑥 ·P 𝑢) ∈ P)
3231ad2ant2rl 488 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑢) ∈ P)
33 mulclpr 6728 . . . . 5 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
3433ad2ant2lr 487 . . . 4 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑣) ∈ P)
35 addclpr 6693 . . . 4 (((𝑥 ·P 𝑢) ∈ P ∧ (𝑦 ·P 𝑣) ∈ P) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3632, 34, 35syl2anc 397 . . 3 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P)
3730, 36jca 294 . 2 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢)) ∈ P ∧ ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣)) ∈ P))
38 simp1l 939 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
39 simp2l 941 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
40 simp3l 943 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
41 distrprg 6744 . . . . 5 ((𝑥P𝑧P𝑣P) → (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)))
4238, 39, 40, 41syl3anc 1146 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P (𝑧 +P 𝑣)) = ((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)))
43 simp1r 940 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
44 simp2r 942 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
45 simp3r 944 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
46 distrprg 6744 . . . . 5 ((𝑦P𝑤P𝑢P) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
4743, 44, 45, 46syl3anc 1146 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
4842, 47oveq12d 5558 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))))
4938, 39, 12syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑧) ∈ P)
5038, 40, 25syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑣) ∈ P)
5143, 44, 14syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑤) ∈ P)
52 addcomprg 6734 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5352adantl 266 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
54 addassprg 6735 . . . . 5 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5554adantl 266 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
5643, 45, 27syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑢) ∈ P)
57 addclpr 6693 . . . . 5 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5857adantl 266 . . . 4 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
5949, 50, 51, 53, 55, 56, 58caov4d 5713 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑧) +P (𝑥 ·P 𝑣)) +P ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))))
6048, 59eqtrd 2088 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑧 +P 𝑣)) +P (𝑦 ·P (𝑤 +P 𝑢))) = (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P ((𝑥 ·P 𝑣) +P (𝑦 ·P 𝑢))))
61 distrprg 6744 . . . . 5 ((𝑥P𝑤P𝑢P) → (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)))
6238, 44, 45, 61syl3anc 1146 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P (𝑤 +P 𝑢)) = ((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)))
63 distrprg 6744 . . . . 5 ((𝑦P𝑧P𝑣P) → (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
6443, 39, 40, 63syl3anc 1146 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P (𝑧 +P 𝑣)) = ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣)))
6562, 64oveq12d 5558 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))))
6638, 44, 18syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑤) ∈ P)
6738, 45, 31syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 ·P 𝑢) ∈ P)
6843, 39, 20syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑧) ∈ P)
6943, 40, 33syl2anc 397 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 ·P 𝑣) ∈ P)
7066, 67, 68, 53, 55, 69, 58caov4d 5713 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 ·P 𝑤) +P (𝑥 ·P 𝑢)) +P ((𝑦 ·P 𝑧) +P (𝑦 ·P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))))
7165, 70eqtrd 2088 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 ·P (𝑤 +P 𝑢)) +P (𝑦 ·P (𝑧 +P 𝑣))) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P ((𝑥 ·P 𝑢) +P (𝑦 ·P 𝑣))))
721, 2, 3, 4, 5, 6, 11, 24, 37, 60, 71ecovidi 6249 1 ((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wcel 1409  (class class class)co 5540  Pcnp 6447   +P cpp 6449   ·P cmp 6450   ~R cer 6452  Rcnr 6453   +R cplr 6457   ·R cmr 6458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-iplp 6624  df-imp 6625  df-enr 6869  df-nr 6870  df-plr 6871  df-mr 6872
This theorem is referenced by:  pn0sr  6914  axmulass  7005  axdistr  7006
  Copyright terms: Public domain W3C validator