ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulcl GIF version

Theorem djulcl 6936
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2697 . . 3 (𝐶𝐴𝐶 ∈ V)
2 0ex 4055 . . . . 5 ∅ ∈ V
32snid 3556 . . . 4 ∅ ∈ {∅}
4 opelxpi 4571 . . . 4 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
53, 4mpan 420 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
6 opeq2 3706 . . . 4 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
7 df-inl 6932 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7fvmptg 5497 . . 3 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
91, 5, 8syl2anc 408 . 2 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
10 elun1 3243 . . . 4 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
115, 10syl 14 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
12 df-dju 6923 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1311, 12eleqtrrdi 2233 . 2 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
149, 13eqeltrd 2216 1 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  Vcvv 2686  cun 3069  c0 3363  {csn 3527  cop 3530   × cxp 4537  cfv 5123  1oc1o 6306  cdju 6922  inlcinl 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-dju 6923  df-inl 6932
This theorem is referenced by:  djulclb  6940  updjudhcoinlf  6965  omp1eomlem  6979  difinfsnlem  6984  difinfsn  6985  ctmlemr  6993  ctm  6994  ctssdclemn0  6995  ctssdccl  6996  fodju0  7019  exmidfodomrlemr  7058  exmidfodomrlemrALT  7059  subctctexmid  13196
  Copyright terms: Public domain W3C validator