ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulclb GIF version

Theorem djulclb 6940
Description: Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
Assertion
Ref Expression
djulclb (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))

Proof of Theorem djulclb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulcl 6936 . 2 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
2 1n0 6329 . . . . . . . . . 10 1o ≠ ∅
32necomi 2393 . . . . . . . . 9 ∅ ≠ 1o
4 0ex 4055 . . . . . . . . . 10 ∅ ∈ V
54elsn 3543 . . . . . . . . 9 (∅ ∈ {1o} ↔ ∅ = 1o)
63, 5nemtbir 2397 . . . . . . . 8 ¬ ∅ ∈ {1o}
76intnanr 915 . . . . . . 7 ¬ (∅ ∈ {1o} ∧ 𝐶𝐵)
8 opelxp 4569 . . . . . . 7 (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ↔ (∅ ∈ {1o} ∧ 𝐶𝐵))
97, 8mtbir 660 . . . . . 6 ¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)
10 elex 2697 . . . . . . . . . . . 12 (𝐶𝑉𝐶 ∈ V)
11 opexg 4150 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ 𝐶𝑉) → ⟨∅, 𝐶⟩ ∈ V)
124, 11mpan 420 . . . . . . . . . . . 12 (𝐶𝑉 → ⟨∅, 𝐶⟩ ∈ V)
13 opeq2 3706 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
14 df-inl 6932 . . . . . . . . . . . . 13 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
1513, 14fvmptg 5497 . . . . . . . . . . . 12 ((𝐶 ∈ V ∧ ⟨∅, 𝐶⟩ ∈ V) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1610, 12, 15syl2anc 408 . . . . . . . . . . 11 (𝐶𝑉 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
1716adantr 274 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) = ⟨∅, 𝐶⟩)
18 df-dju 6923 . . . . . . . . . . . . 13 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1918eleq2i 2206 . . . . . . . . . . . 12 ((inl‘𝐶) ∈ (𝐴𝐵) ↔ (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2019biimpi 119 . . . . . . . . . . 11 ((inl‘𝐶) ∈ (𝐴𝐵) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2120adantl 275 . . . . . . . . . 10 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (inl‘𝐶) ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2217, 21eqeltrrd 2217 . . . . . . . . 9 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 elun 3217 . . . . . . . . 9 (⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2422, 23sylib 121 . . . . . . . 8 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ∨ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵)))
2524orcomd 718 . . . . . . 7 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) ∨ ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
2625ord 713 . . . . . 6 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (¬ ⟨∅, 𝐶⟩ ∈ ({1o} × 𝐵) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴)))
279, 26mpi 15 . . . . 5 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
28 opelxp 4569 . . . . 5 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) ↔ (∅ ∈ {∅} ∧ 𝐶𝐴))
2927, 28sylib 121 . . . 4 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → (∅ ∈ {∅} ∧ 𝐶𝐴))
3029simprd 113 . . 3 ((𝐶𝑉 ∧ (inl‘𝐶) ∈ (𝐴𝐵)) → 𝐶𝐴)
3130ex 114 . 2 (𝐶𝑉 → ((inl‘𝐶) ∈ (𝐴𝐵) → 𝐶𝐴))
321, 31impbid2 142 1 (𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  Vcvv 2686  cun 3069  c0 3363  {csn 3527  cop 3530   × cxp 4537  cfv 5123  1oc1o 6306  cdju 6922  inlcinl 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-1o 6313  df-dju 6923  df-inl 6932
This theorem is referenced by:  exmidfodomrlemr  7058
  Copyright terms: Public domain W3C validator