ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcanlem GIF version

Theorem expcanlem 9792
Description: Lemma for expcan 9793. Proving the order in one direction. (Contributed by Jim Kingdon, 29-Jan-2022.)
Hypotheses
Ref Expression
expcanlem.a (𝜑𝐴 ∈ ℝ)
expcanlem.m (𝜑𝑀 ∈ ℤ)
expcanlem.n (𝜑𝑁 ∈ ℤ)
expcanlem.gt1 (𝜑 → 1 < 𝐴)
Assertion
Ref Expression
expcanlem (𝜑 → ((𝐴𝑀) ≤ (𝐴𝑁) → 𝑀𝑁))

Proof of Theorem expcanlem
StepHypRef Expression
1 expcanlem.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 expcanlem.n . . . 4 (𝜑𝑁 ∈ ℤ)
3 expcanlem.m . . . 4 (𝜑𝑀 ∈ ℤ)
4 expcanlem.gt1 . . . 4 (𝜑 → 1 < 𝐴)
5 ltexp2a 9677 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (1 < 𝐴𝑁 < 𝑀)) → (𝐴𝑁) < (𝐴𝑀))
65expr 367 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 1 < 𝐴) → (𝑁 < 𝑀 → (𝐴𝑁) < (𝐴𝑀)))
71, 2, 3, 4, 6syl31anc 1173 . . 3 (𝜑 → (𝑁 < 𝑀 → (𝐴𝑁) < (𝐴𝑀)))
87con3d 594 . 2 (𝜑 → (¬ (𝐴𝑁) < (𝐴𝑀) → ¬ 𝑁 < 𝑀))
9 0red 7234 . . . . . 6 (𝜑 → 0 ∈ ℝ)
10 1red 7248 . . . . . 6 (𝜑 → 1 ∈ ℝ)
11 0lt1 7355 . . . . . . 7 0 < 1
1211a1i 9 . . . . . 6 (𝜑 → 0 < 1)
139, 10, 1, 12, 4lttrd 7354 . . . . 5 (𝜑 → 0 < 𝐴)
141, 13gt0ap0d 7847 . . . 4 (𝜑𝐴 # 0)
151, 14, 3reexpclzapd 9779 . . 3 (𝜑 → (𝐴𝑀) ∈ ℝ)
161, 14, 2reexpclzapd 9779 . . 3 (𝜑 → (𝐴𝑁) ∈ ℝ)
1715, 16lenltd 7346 . 2 (𝜑 → ((𝐴𝑀) ≤ (𝐴𝑁) ↔ ¬ (𝐴𝑁) < (𝐴𝑀)))
183zred 8602 . . 3 (𝜑𝑀 ∈ ℝ)
192zred 8602 . . 3 (𝜑𝑁 ∈ ℝ)
2018, 19lenltd 7346 . 2 (𝜑 → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
218, 17, 203imtr4d 201 1 (𝜑 → ((𝐴𝑀) ≤ (𝐴𝑁) → 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 920  wcel 1434   class class class wbr 3805  (class class class)co 5563  cr 7094  0cc0 7095  1c1 7096   < clt 7267  cle 7268  cz 8484  cexp 9624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-rp 8868  df-iseq 9574  df-iexp 9625
This theorem is referenced by:  expcan  9793
  Copyright terms: Public domain W3C validator