ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinopn GIF version

Theorem fiinopn 12171
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
Assertion
Ref Expression
fiinopn (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))

Proof of Theorem fiinopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwg 3518 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽𝐴𝐽))
2 sseq1 3120 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥𝐽𝐴𝐽))
3 neeq1 2321 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
4 eleq1 2202 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
52, 3, 43anbi123d 1290 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)))
6 inteq 3774 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 𝑥 = 𝐴)
76eleq1d 2208 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽))
87imbi2d 229 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝐽 ∈ Top → 𝑥𝐽) ↔ (𝐽 ∈ Top → 𝐴𝐽)))
95, 8imbi12d 233 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽)) ↔ ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))))
10 sp 1488 . . . . . . . . . . . . . 14 (∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
1110adantl 275 . . . . . . . . . . . . 13 ((∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
12 istopfin 12167 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)))
1311, 12syl11 31 . . . . . . . . . . . 12 ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽))
149, 13vtoclg 2746 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝐽 → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽)))
1514com12 30 . . . . . . . . . 10 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))
16153exp 1180 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1716com3r 79 . . . . . . . 8 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1817com4r 86 . . . . . . 7 (𝐴 ∈ 𝒫 𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
191, 18syl6bir 163 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽))))))
2019pm2.43a 51 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
2120com4l 84 . . . 4 (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽)))))
2221pm2.43i 49 . . 3 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽))))
23223imp 1175 . 2 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))
2423com12 30 1 (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962  wal 1329   = wceq 1331  wcel 1480  wne 2308  wss 3071  c0 3363  𝒫 cpw 3510   cuni 3736   cint 3771  Fincfn 6634  Topctop 12164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-er 6429  df-en 6635  df-fin 6637  df-top 12165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator