ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooneg GIF version

Theorem iooneg 9774
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iooneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴)))

Proof of Theorem iooneg
StepHypRef Expression
1 ltneg 8227 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴))
213adant2 1000 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴))
3 ltneg 8227 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
43ancoms 266 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
543adant1 999 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
62, 5anbi12d 464 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (-𝐶 < -𝐴 ∧ -𝐵 < -𝐶)))
7 ancom 264 . . 3 ((-𝐶 < -𝐴 ∧ -𝐵 < -𝐶) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))
86, 7syl6bb 195 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
9 rexr 7814 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
10 rexr 7814 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
11 rexr 7814 . . 3 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
12 elioo5 9719 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
139, 10, 11, 12syl3an 1258 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
14 renegcl 8026 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
15 renegcl 8026 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
16 renegcl 8026 . . . 4 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
17 rexr 7814 . . . . 5 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
18 rexr 7814 . . . . 5 (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*)
19 rexr 7814 . . . . 5 (-𝐶 ∈ ℝ → -𝐶 ∈ ℝ*)
20 elioo5 9719 . . . . 5 ((-𝐵 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐶 ∈ ℝ*) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
2117, 18, 19, 20syl3an 1258 . . . 4 ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ -𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
2214, 15, 16, 21syl3an 1258 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
23223com12 1185 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
248, 13, 233bitr4d 219 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7622  *cxr 7802   < clt 7803  -cneg 7937  (,)cioo 9674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-sub 7938  df-neg 7939  df-ioo 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator