ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoti Unicode version

Theorem isoti 6479
Description: An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
Assertion
Ref Expression
isoti  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
Distinct variable groups:    u, A, v   
u, B, v    u, F, v    u, R, v   
u, S, v

Proof of Theorem isoti
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isocnv 5482 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  `' F  Isom  S ,  R  ( B ,  A ) )
2 isotilem 6478 . . . 4  |-  ( `' F  Isom  S ,  R  ( B ,  A )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  ->  A. x  e.  B  A. y  e.  B  ( x  =  y  <->  ( -.  x S y  /\  -.  y S x ) ) ) )
31, 2syl 14 . . 3  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  ->  A. x  e.  B  A. y  e.  B  ( x  =  y  <->  ( -.  x S y  /\  -.  y S x ) ) ) )
4 isotilem 6478 . . 3  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  =  y  <->  ( -.  x S y  /\  -.  y S x ) )  ->  A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) ) )
53, 4impbid 127 . 2  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. x  e.  B  A. y  e.  B  ( x  =  y  <->  ( -.  x S y  /\  -.  y S x ) ) ) )
6 equequ1 1639 . . . 4  |-  ( x  =  u  ->  (
x  =  y  <->  u  =  y ) )
7 breq1 3796 . . . . . 6  |-  ( x  =  u  ->  (
x S y  <->  u S
y ) )
87notbid 625 . . . . 5  |-  ( x  =  u  ->  ( -.  x S y  <->  -.  u S y ) )
9 breq2 3797 . . . . . 6  |-  ( x  =  u  ->  (
y S x  <->  y S u ) )
109notbid 625 . . . . 5  |-  ( x  =  u  ->  ( -.  y S x  <->  -.  y S u ) )
118, 10anbi12d 457 . . . 4  |-  ( x  =  u  ->  (
( -.  x S y  /\  -.  y S x )  <->  ( -.  u S y  /\  -.  y S u ) ) )
126, 11bibi12d 233 . . 3  |-  ( x  =  u  ->  (
( x  =  y  <-> 
( -.  x S y  /\  -.  y S x ) )  <-> 
( u  =  y  <-> 
( -.  u S y  /\  -.  y S u ) ) ) )
13 equequ2 1640 . . . 4  |-  ( y  =  v  ->  (
u  =  y  <->  u  =  v ) )
14 breq2 3797 . . . . . 6  |-  ( y  =  v  ->  (
u S y  <->  u S
v ) )
1514notbid 625 . . . . 5  |-  ( y  =  v  ->  ( -.  u S y  <->  -.  u S v ) )
16 breq1 3796 . . . . . 6  |-  ( y  =  v  ->  (
y S u  <->  v S u ) )
1716notbid 625 . . . . 5  |-  ( y  =  v  ->  ( -.  y S u  <->  -.  v S u ) )
1815, 17anbi12d 457 . . . 4  |-  ( y  =  v  ->  (
( -.  u S y  /\  -.  y S u )  <->  ( -.  u S v  /\  -.  v S u ) ) )
1913, 18bibi12d 233 . . 3  |-  ( y  =  v  ->  (
( u  =  y  <-> 
( -.  u S y  /\  -.  y S u ) )  <-> 
( u  =  v  <-> 
( -.  u S v  /\  -.  v S u ) ) ) )
2012, 19cbvral2v 2586 . 2  |-  ( A. x  e.  B  A. y  e.  B  (
x  =  y  <->  ( -.  x S y  /\  -.  y S x ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
215, 20syl6bb 194 1  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103   A.wral 2349   class class class wbr 3793   `'ccnv 4370    Isom wiso 4933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-isom 4941
This theorem is referenced by:  supisoti  6482
  Copyright terms: Public domain W3C validator