![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqmuladdim | GIF version |
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.) |
Ref | Expression |
---|---|
modqmuladdim | ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 108 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) = 𝐵) | |
2 | simpl1 942 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℤ) | |
3 | zq 8781 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
4 | 2, 3 | syl 14 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℚ) |
5 | simpl2 943 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℚ) | |
6 | simpl3 944 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 < 𝑀) | |
7 | 4, 5, 6 | modqcld 9399 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℚ) |
8 | 1, 7 | eqeltrrd 2157 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℚ) |
9 | qre 8780 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
10 | 8, 9 | syl 14 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℝ) |
11 | modqge0 9403 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ (𝐴 mod 𝑀)) | |
12 | 4, 5, 6, 11 | syl3anc 1170 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 ≤ (𝐴 mod 𝑀)) |
13 | 12, 1 | breqtrd 3811 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 0 ≤ 𝐵) |
14 | modqlt 9404 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) < 𝑀) | |
15 | 4, 5, 6, 14 | syl3anc 1170 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) < 𝑀) |
16 | 1, 15 | eqbrtrrd 3809 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 < 𝑀) |
17 | 0re 7170 | . . . . . 6 ⊢ 0 ∈ ℝ | |
18 | qre 8780 | . . . . . . 7 ⊢ (𝑀 ∈ ℚ → 𝑀 ∈ ℝ) | |
19 | rexr 7215 | . . . . . . 7 ⊢ (𝑀 ∈ ℝ → 𝑀 ∈ ℝ*) | |
20 | 5, 18, 19 | 3syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝑀 ∈ ℝ*) |
21 | elico2 9025 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐵 ∈ (0[,)𝑀) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 < 𝑀))) | |
22 | 17, 20, 21 | sylancr 405 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐵 ∈ (0[,)𝑀) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 < 𝑀))) |
23 | 10, 13, 16, 22 | mpbir3and 1122 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ (0[,)𝑀)) |
24 | 2, 8, 23, 5, 6 | modqmuladd 9437 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
25 | 1, 24 | mpbid 145 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) |
26 | 25 | ex 113 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ∃wrex 2350 class class class wbr 3787 (class class class)co 5537 ℝcr 7031 0cc0 7032 + caddc 7035 · cmul 7037 ℝ*cxr 7203 < clt 7204 ≤ cle 7205 ℤcz 8421 ℚcq 8774 [,)cico 8978 mod cmo 9393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-mulrcl 7126 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-mulass 7130 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-1rid 7134 ax-0id 7135 ax-rnegex 7136 ax-precex 7137 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-apti 7142 ax-pre-ltadd 7143 ax-pre-mulgt0 7144 ax-pre-mulext 7145 ax-arch 7146 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-iun 3682 df-br 3788 df-opab 3842 df-mpt 3843 df-id 4050 df-po 4053 df-iso 4054 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fn 4929 df-f 4930 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-1st 5792 df-2nd 5793 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-reap 7731 df-ap 7738 df-div 7817 df-inn 8096 df-n0 8345 df-z 8422 df-q 8775 df-rp 8805 df-ico 8982 df-fl 9341 df-mod 9394 |
This theorem is referenced by: modqmuladdnn0 9439 |
Copyright terms: Public domain | W3C validator |