ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0r GIF version

Theorem mulap0r 8377
Description: A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
mulap0r ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))

Proof of Theorem mulap0r
StepHypRef Expression
1 simp3 983 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 𝐵) # 0)
2 simp2 982 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐵 ∈ ℂ)
32mul02d 8154 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (0 · 𝐵) = 0)
41, 3breqtrrd 3956 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 𝐵) # (0 · 𝐵))
5 simp1 981 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐴 ∈ ℂ)
6 0cnd 7759 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 0 ∈ ℂ)
7 mulext 8376 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (0 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · 𝐵) # (0 · 𝐵) → (𝐴 # 0 ∨ 𝐵 # 𝐵)))
85, 2, 6, 2, 7syl22anc 1217 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → ((𝐴 · 𝐵) # (0 · 𝐵) → (𝐴 # 0 ∨ 𝐵 # 𝐵)))
94, 8mpd 13 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∨ 𝐵 # 𝐵))
109orcomd 718 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 𝐵𝐴 # 0))
11 apirr 8367 . . . 4 (𝐵 ∈ ℂ → ¬ 𝐵 # 𝐵)
12 biorf 733 . . . 4 𝐵 # 𝐵 → (𝐴 # 0 ↔ (𝐵 # 𝐵𝐴 # 0)))
132, 11, 123syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ↔ (𝐵 # 𝐵𝐴 # 0)))
1410, 13mpbird 166 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐴 # 0)
155mul01d 8155 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 0) = 0)
161, 15breqtrrd 3956 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 · 𝐵) # (𝐴 · 0))
17 mulext 8376 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐴 · 0) → (𝐴 # 𝐴𝐵 # 0)))
185, 2, 5, 6, 17syl22anc 1217 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → ((𝐴 · 𝐵) # (𝐴 · 0) → (𝐴 # 𝐴𝐵 # 0)))
1916, 18mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 𝐴𝐵 # 0))
20 apirr 8367 . . . 4 (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)
21 biorf 733 . . . 4 𝐴 # 𝐴 → (𝐵 # 0 ↔ (𝐴 # 𝐴𝐵 # 0)))
225, 20, 213syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 0 ↔ (𝐴 # 𝐴𝐵 # 0)))
2319, 22mpbird 166 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → 𝐵 # 0)
2414, 23jca 304 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620   · cmul 7625   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by:  msqge0  8378  mulge0  8381  mulap0b  8416
  Copyright terms: Public domain W3C validator