ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink GIF version

Theorem rebtwn2zlemshrink 9209
Description: Lemma for rebtwn2z 9210. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable groups:   𝐴,𝑚,𝑥   𝑚,𝐽
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rebtwn2zlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 916 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ (ℤ‘2))
2 3simpb 913 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
3 2z 8329 . . 3 2 ∈ ℤ
4 oveq2 5547 . . . . . . . 8 (𝑤 = 2 → (𝑚 + 𝑤) = (𝑚 + 2))
54breq2d 3803 . . . . . . 7 (𝑤 = 2 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 2)))
65anbi2d 445 . . . . . 6 (𝑤 = 2 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
76rexbidv 2344 . . . . 5 (𝑤 = 2 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
87anbi2d 445 . . . 4 (𝑤 = 2 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)))))
98imbi1d 224 . . 3 (𝑤 = 2 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
10 oveq2 5547 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
1110breq2d 3803 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1211anbi2d 445 . . . . . 6 (𝑤 = 𝑘 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1312rexbidv 2344 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1413anbi2d 445 . . . 4 (𝑤 = 𝑘 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
1514imbi1d 224 . . 3 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
16 oveq2 5547 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1716breq2d 3803 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1817anbi2d 445 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918rexbidv 2344 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
2019anbi2d 445 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2120imbi1d 224 . . 3 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
22 oveq2 5547 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2322breq2d 3803 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2423anbi2d 445 . . . . . 6 (𝑤 = 𝐽 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2524rexbidv 2344 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2625anbi2d 445 . . . 4 (𝑤 = 𝐽 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽)))))
2726imbi1d 224 . . 3 (𝑤 = 𝐽 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
28 breq1 3794 . . . . . . 7 (𝑚 = 𝑥 → (𝑚 < 𝐴𝑥 < 𝐴))
29 oveq1 5546 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 2) = (𝑥 + 2))
3029breq2d 3803 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 2) ↔ 𝐴 < (𝑥 + 2)))
3128, 30anbi12d 450 . . . . . 6 (𝑚 = 𝑥 → ((𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
3231cbvrexv 2551 . . . . 5 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3332biimpi 117 . . . 4 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3433adantl 266 . . 3 ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
35 rebtwn2zlemstep 9208 . . . . . 6 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))
36353expia 1117 . . . . 5 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
3736imdistanda 430 . . . 4 (𝑘 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
3837imim1d 73 . . 3 (𝑘 ∈ (ℤ‘2) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
393, 9, 15, 21, 27, 34, 38uzind4i 8630 . 2 (𝐽 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
401, 2, 39sylc 60 1 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3791  cfv 4929  (class class class)co 5539  cr 6945  1c1 6947   + caddc 6949   < clt 7118  2c2 8039  cz 8301  cuz 8568
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-ltadd 7057
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-inn 7990  df-2 8048  df-n0 8239  df-z 8302  df-uz 8569
This theorem is referenced by:  rebtwn2z  9210
  Copyright terms: Public domain W3C validator