Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcie GIF version

Theorem sbcie 2817
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
sbcie.1 𝐴 ∈ V
sbcie.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbcie ([𝐴 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbcie
StepHypRef Expression
1 sbcie.1 . 2 𝐴 ∈ V
2 sbcie.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 2815 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜓))
41, 3ax-mp 7 1 ([𝐴 / 𝑥]𝜑𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 102   = wceq 1257   ∈ wcel 1407  Vcvv 2572  [wsbc 2784 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036 This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-v 2574  df-sbc 2785 This theorem is referenced by:  findcard2  6374  findcard2s  6375  ac6sfi  6380  nn1suc  7979  indstr  8602
 Copyright terms: Public domain W3C validator