ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq2 GIF version

Theorem seq3feq2 10243
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seq3fveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seq3fveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3fveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
seq3fveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3feq2.4 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seq3feq2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3feq2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 seq3fveq2.1 . . . . . 6 (𝜑𝐾 ∈ (ℤ𝑀))
3 eluzel2 9331 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
42, 3syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 seq3fveq2.f . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 seq3fveq2.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
71, 4, 5, 6seqf 10234 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
87ffnd 5273 . . 3 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
9 uzss 9346 . . . 4 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
102, 9syl 14 . . 3 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
11 fnssres 5236 . . 3 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ (ℤ𝐾) ⊆ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
128, 10, 11syl2anc 408 . 2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
13 eqid 2139 . . . 4 (ℤ𝐾) = (ℤ𝐾)
14 eluzelz 9335 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
152, 14syl 14 . . . 4 (𝜑𝐾 ∈ ℤ)
16 seq3fveq2.g . . . 4 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
1713, 15, 16, 6seqf 10234 . . 3 (𝜑 → seq𝐾( + , 𝐺):(ℤ𝐾)⟶𝑆)
1817ffnd 5273 . 2 (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ𝐾))
19 fvres 5445 . . . 4 (𝑧 ∈ (ℤ𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
2019adantl 275 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
212adantr 274 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
22 seq3fveq2.2 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
2322adantr 274 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
245adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2516adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
266adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
27 simpr 109 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝑧 ∈ (ℤ𝐾))
28 elfzuz 9802 . . . . . 6 (𝑘 ∈ ((𝐾 + 1)...𝑧) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
29 seq3feq2.4 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
3028, 29sylan2 284 . . . . 5 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3130adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3221, 23, 24, 25, 26, 27, 31seq3fveq2 10242 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3320, 32eqtrd 2172 . 2 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3412, 18, 33eqfnfvd 5521 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wss 3071  cres 4541   Fn wfn 5118  cfv 5123  (class class class)co 5774  1c1 7621   + caddc 7623  cz 9054  cuz 9326  ...cfz 9790  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-seqfrec 10219
This theorem is referenced by:  seq3id  10281
  Copyright terms: Public domain W3C validator