ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemrl GIF version

Theorem suplocexprlemrl 7525
Description: Lemma for suplocexpr 7533. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemrl (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Distinct variable groups:   𝐴,𝑟   𝑥,𝐴,𝑦   𝜑,𝑞,𝑟   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑞)

Proof of Theorem suplocexprlemrl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 suplocexprlemell 7521 . . . . . . 7 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
21biimpi 119 . . . . . 6 (𝑞 (1st𝐴) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
32adantl 275 . . . . 5 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 suplocexpr.m . . . . . . . . . . 11 (𝜑 → ∃𝑥 𝑥𝐴)
5 suplocexpr.ub . . . . . . . . . . 11 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
6 suplocexpr.loc . . . . . . . . . . 11 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
74, 5, 6suplocexprlemss 7523 . . . . . . . . . 10 (𝜑𝐴P)
87ad3antrrr 483 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
9 simprl 520 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
108, 9sseldd 3098 . . . . . . . 8 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
11 prop 7283 . . . . . . . 8 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
1210, 11syl 14 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
13 simprr 521 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
14 prnmaxl 7296 . . . . . . 7 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞 ∈ (1st𝑠)) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
1512, 13, 14syl2anc 408 . . . . . 6 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
16 ltrelnq 7173 . . . . . . . . 9 <Q ⊆ (Q × Q)
1716brel 4591 . . . . . . . 8 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
1817simprd 113 . . . . . . 7 (𝑞 <Q 𝑟𝑟Q)
1918ad2antll 482 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟Q)
20 simprr 521 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑞 <Q 𝑟)
21 simplrl 524 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑠𝐴)
22 simprl 520 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 ∈ (1st𝑠))
23 rspe 2481 . . . . . . . . 9 ((𝑠𝐴𝑟 ∈ (1st𝑠)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2421, 22, 23syl2anc 408 . . . . . . . 8 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
25 suplocexprlemell 7521 . . . . . . . 8 (𝑟 (1st𝐴) ↔ ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2624, 25sylibr 133 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 (1st𝐴))
2720, 26jca 304 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → (𝑞 <Q 𝑟𝑟 (1st𝐴)))
2815, 19, 27reximssdv 2536 . . . . 5 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
293, 28rexlimddv 2554 . . . 4 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
3029ex 114 . . 3 ((𝜑𝑞Q) → (𝑞 (1st𝐴) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
31 simprr 521 . . . . . . 7 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑟 (1st𝐴))
3231, 25sylib 121 . . . . . 6 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
33 simprl 520 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠𝐴)
34 simplrl 524 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 <Q 𝑟)
357ad3antrrr 483 . . . . . . . . . . . . 13 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝐴P)
3635, 33sseldd 3098 . . . . . . . . . . . 12 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠P)
3736, 11syl 14 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
38 simprr 521 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑟 ∈ (1st𝑠))
39 prcdnql 7292 . . . . . . . . . . 11 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑟 ∈ (1st𝑠)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4037, 38, 39syl2anc 408 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4134, 40mpd 13 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
42 19.8a 1569 . . . . . . . . 9 ((𝑠𝐴𝑞 ∈ (1st𝑠)) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4333, 41, 42syl2anc 408 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
44 df-rex 2422 . . . . . . . 8 (∃𝑠𝐴 𝑞 ∈ (1st𝑠) ↔ ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4543, 44sylibr 133 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4645, 1sylibr 133 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 (1st𝐴))
4732, 46rexlimddv 2554 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑞 (1st𝐴))
4847ex 114 . . . 4 ((𝜑𝑞Q) → ((𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
4948rexlimdvw 2553 . . 3 ((𝜑𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
5030, 49impbid 128 . 2 ((𝜑𝑞Q) → (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
5150ralrimiva 2505 1 (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  wex 1468  wcel 1480  wral 2416  wrex 2417  wss 3071  cop 3530   cuni 3736   class class class wbr 3929  cima 4542  cfv 5123  1st c1st 6036  2nd c2nd 6037  Qcnq 7088   <Q cltq 7093  Pcnp 7099  <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-qs 6435  df-ni 7112  df-nqqs 7156  df-ltnqqs 7161  df-inp 7274  df-iltp 7278
This theorem is referenced by:  suplocexprlemex  7530
  Copyright terms: Public domain W3C validator