![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseldd | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseldd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
sseldd | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseldd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | sseld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | sseld 2999 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
4 | 1, 3 | mpd 13 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ⊆ wss 2974 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: frirrg 4113 ordtri2or2exmid 4322 riotass 5526 tfrcldm 6012 eroveu 6263 eroprf 6265 findcard2d 6425 findcard2sd 6426 undiffi 6443 suplub2ti 6473 nnppipi 6595 archnqq 6669 prarloclemlt 6745 suprubex 8096 suprzclex 8526 fzssp1 9161 elfzoelz 9234 fzofzp1 9313 fzostep1 9323 frecuzrdgg 9498 frecuzrdgdomlem 9499 frecuzrdgsuctlem 9505 iseqvalt 9532 isermono 9553 bcm1k 9784 fimaxre2 10247 zssinfcl 10488 |
Copyright terms: Public domain | W3C validator |