ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssov1 GIF version

Theorem suppssov1 5979
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑥,𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴𝑉)
2 elex 2697 . . . . . . . 8 (𝐴𝑉𝐴 ∈ V)
31, 2syl 14 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43adantr 274 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
5 eldifsni 3652 . . . . . . . 8 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
6 oveq2 5782 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
76eqeq1d 2148 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
8 suppssov1.o . . . . . . . . . . . . 13 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
98ralrimiva 2505 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
109adantr 274 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
11 suppssov1.b . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐵𝑅)
127, 10, 11rspcdva 2794 . . . . . . . . . 10 ((𝜑𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
13 oveq1 5781 . . . . . . . . . . 11 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1413eqeq1d 2148 . . . . . . . . . 10 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1512, 14syl5ibrcom 156 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1615necon3d 2352 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
175, 16syl5 32 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴𝑌))
1817imp 123 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
19 eldifsn 3650 . . . . . 6 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
204, 18, 19sylanbrc 413 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2120ex 114 . . . 4 ((𝜑𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2221ss2rabdv 3178 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
23 eqid 2139 . . . 4 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
2423mptpreima 5032 . . 3 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})}
25 eqid 2139 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2625mptpreima 5032 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2722, 24, 263sstr4g 3140 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
28 suppssov1.s . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
2927, 28sstrd 3107 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wne 2308  wral 2416  {crab 2420  Vcvv 2686  cdif 3068  wss 3071  {csn 3527  cmpt 3989  ccnv 4538  cima 4542  (class class class)co 5774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  suppssof1  5999
  Copyright terms: Public domain W3C validator